

Моделирование поведения поликристаллических сегнетоэлектроупругих материалов на основе микромеханических и самосогласованных моделей

Додонов Павел Анатольевич, группа 6055/11 Научный руководитель к. ф.-м. н., доцент Семёнов Артём Семёнович Рецензент д. ф.-м. н., профессор Иванова Елена Александровна

Модули памяти Нелинейный диэлектрик (Murata, Coherent, Fujitsu)

> Системы впрыска Обратный пьезоэффект (Bosch, Zexel, Denso, Delphi, Siemens VDO)

Микромоторы Обратный пьезоэффект (Canon, Nokia, Micromo, PCBmotor)

Датчики давления Прямой пьезоэффект Dytran, Noliac, Volture

Гаситель колебаний, разработка Обратный пьезоэффект (AUDI)

Модель тетрагонального монокристалла

$$G^{\alpha} = (\underline{\mu}^{\alpha} \gamma^{\alpha} + \frac{1}{2} \tilde{\underline{\underline{\varepsilon}}}^{\alpha}) \cdot \cdot \underline{\underline{\sigma}} + (\underline{\underline{s}}^{\alpha} P^{\alpha} + \frac{1}{2} \tilde{\underline{\underline{D}}}^{\alpha}) \cdot \underline{\underline{E}}$$

1. Склерономная модель

$$\dot{f}^{\alpha} = \left\{ \underbrace{\underline{\dot{\sigma}}}_{\underline{\dot{E}}} \right\}^{T} \sum_{\beta=1}^{N} {}^{I}X_{\alpha\beta}^{-1} \left\{ \underbrace{\widehat{\underline{\sigma}}}_{\underline{\hat{E}}}^{\beta} \right\}$$
for equations of the second s

$$\begin{cases} \underline{\widehat{\underline{\sigma}}}^{\alpha} = {}^{4}\underline{\underline{C}}^{D}\cdot\underline{\widehat{\underline{\varepsilon}}}^{\alpha} + \underline{\widehat{D}}^{\alpha}\cdot{}^{3}\underline{\underline{h}} \\ \underline{\widehat{\underline{E}}}^{\alpha} = {}^{3}\underline{\underline{h}}\cdot\underline{\widehat{\underline{\varepsilon}}}^{\alpha} + \underline{\widehat{D}}^{\alpha}\cdot\underline{\underline{\beta}}^{\varepsilon} \end{cases}$$

$lpha_{активна:}^{система}$	lpha система неактивна:
$\begin{cases} G^{\alpha} = G_{c}^{\alpha} \\ \dot{G}^{\alpha} = \dot{G}_{c}^{\alpha} \\ \dot{f}^{\alpha} > 0 \end{cases} \begin{cases} G^{\alpha} = G_{c}^{\alpha} \\ \dot{G}^{\alpha} < \dot{G}_{c}^{\alpha} \\ \dot{f}^{\alpha} = 0 \end{cases}$	$\begin{cases} G^{\alpha} < G_{c}^{\alpha} \\ \dot{f}^{\alpha} = 0 \end{cases}$

$$G^{\alpha} = (\underline{\mu}^{\alpha} \gamma^{\alpha} + \frac{1}{2} \underline{\tilde{\underline{\varepsilon}}}^{\alpha}) \cdot \cdot \underline{\underline{\sigma}} + (\underline{s}^{\alpha} P^{\alpha} + \frac{1}{2} \underline{\widetilde{D}}^{\alpha}) \cdot \underline{E}$$

1. Реономная модель

$$\dot{f}^{\alpha} = B^{\alpha} \left| \frac{G^{\alpha}}{G^{\alpha}_{c}} \right|^{n-1} \left(\frac{G^{\alpha}}{G^{\alpha}_{c}} \right) H^{\alpha}$$

упрочнение:

1. Модель Белова – Креера:

2. Модель Пэтака – МакМикинга:

$$H^{\alpha} = \left(\frac{c_{I}}{c_{0}}\right)^{m}$$
$$H^{\alpha} = \left(1 - e^{-\frac{c_{I}}{c_{0}}}\right)$$

Построение модели поликристалла

Отображение всех направлений ориентаций доменов в модели поликристалла Белова - Креера

Различными цветами отображаются группы доменов, принадлежащие отдельным монокристаллам

Осреднение по поликристаллу

1. Осреднение методом Тейлора

Если внешнее воздействие: <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>

$$\underline{\underline{\sigma}}^{k} = \underline{\underline{\sigma}}$$
$$\underline{\underline{E}}^{k} = \underline{\underline{E}}$$

Объем монокристалла

Constitutive Equation Studio

Значения параметров модели		
B^{lpha}	1	
Ро, Кл/м ²	0,56	
n	50	
ν , Гц	1	
m	1	
Gc ¹⁸⁰ , В*Кл/м ³ *10 ⁵	5	
Gc ⁹⁰ , В*Кл/м ³ *10 ⁵	2,5	

упругие, диэлектрические и пьезо- константы материала взяты из экспериментов Zhou D, 2003 с материалом PZT-PICI5I

Christopher S. Lynch. Electro-Mechanical Coupling in 8/65/35 PLZT. Journal of Applied Mechanics 44 (1996) 4137

Material: PZT-5H. From: Huber, J.E., Fleck, N.A. Multi-axial electrical switching of a ferroelectric: theory versus experiment. J. Mech. Phys. Solids 49, 785-811, 2001

Определение констант и параметров модели, на основе экспериментальных данных

Эксперименты PLZT PIC-151

Упругие константы, Па ⁻¹	Диэлектрическая проницаемость, Ф/м	Пьезоэлектрические коэф., м/В
$S_{11} = 1.1 * 10^{-11}$	k ₁₁ =0,45*10 ⁻⁹	$d_{13} = -1.2 * 10^{-9}$
		$d_{33} = 1,5 * 10^{-9}$
		Критическая энергия переключения
Поляризация насыщения, Kl/m^2,	Деформация насыщения	систем скольжения , Дж
$P_0 = 0,41,$	$\varepsilon_0 = 0,0056$	Gc90 = 600000, Gc180 = 850000

Осреднение по поликристаллу

2. Самосогласованная схема осреднения

2. Самосогласованная схема осреднения

$$\left\{ \underline{\underline{\dot{\mathcal{E}}}}_{\underline{\underline{F}}}^{\bullet} \right\} = \begin{bmatrix} 4 \underline{\underline{C}}^{D,t(k)} & -\frac{3}{\underline{\underline{h}}}^{t(k)^{T}} \\ -\frac{3}{\underline{\underline{h}}}^{t(k)} & \underline{\underline{\beta}}^{\varepsilon,t(k)} \end{bmatrix} \begin{bmatrix} \underline{\underline{A}}^{\varepsilon\varepsilon(k)} & \underline{\underline{A}}^{\varepsilon D(k)} \\ \underline{\underline{\underline{A}}}^{D\varepsilon(k)} & \underline{\underline{\underline{A}}}^{DD(k)} \end{bmatrix} \begin{bmatrix} \underline{\underline{\dot{E}}} \\ \underline{\underline{\dot{D}}} \end{bmatrix}$$

$$\begin{cases} \underline{\underline{\sigma}} \\ \underline{\underline{F}} \end{cases} = \begin{bmatrix} {}^{4}\underline{\underline{C}}^{D,t(k)} & -{}^{3}\underline{\underline{h}}^{t(k)^{T}} \\ {}^{3}\underline{\underline{h}}^{t(k)} & \underline{\underline{\beta}}^{\varepsilon,t(k)} \end{bmatrix} \begin{bmatrix} \underline{\underline{A}}^{\varepsilon\varepsilon(k)} & \underline{\underline{A}}^{\varepsilon D(k)} \\ \underline{\underline{A}}^{D\varepsilon(k)} & \underline{\underline{A}}^{DD(k)} \end{bmatrix} \begin{bmatrix} \underline{\underline{\dot{E}}} \\ \underline{\underline{\dot{D}}} \end{bmatrix}$$

$$\begin{bmatrix} 4 \underline{\underline{C}}^{D,0} & -\frac{3}{\underline{\underline{h}}}^{0,T} \\ -\frac{3}{\underline{\underline{h}}}^{0} & \underline{\underline{\beta}}^{\varepsilon,0} \end{bmatrix} = \begin{bmatrix} 4 \underline{\underline{C}}^{D,t} & -\frac{3}{\underline{\underline{h}}}^{t,T} \\ -\frac{3}{\underline{\underline{h}}}^{t} & \underline{\underline{\beta}}^{\varepsilon,t} \end{bmatrix} \begin{bmatrix} \underline{\underline{A}}^{\varepsilon\varepsilon(k)} & \underline{\underline{A}}^{\varepsilon D(k)} \\ \underline{\underline{A}}^{D\varepsilon(k)} & \underline{\underline{A}}^{DD(k)} \end{bmatrix}$$

2.1. Самосогласованная схема осреднения:

аппроксимация

2.1. Самосогласованная схема осреднения:

аппроксимация

Достигнутые результаты

- а) Предложена модель сегнетоэлектроупругого поликристалла, включающая 60 монокристаллов и 360 доменов, с ориентацией осей <001> кристаллитов в направлении 60 вершин многогранникаС60.
- б) Разработаны различные варианты самосогласованных схем осреднения сегнетоэлектроупругого поликристаллического агрегата
- в) Произведен сравнительный анализ склерономных и реономных микромеханических моделей сегнетоэлектроупругого материала
- г) Произведен сравнительный анализ моделей прямого осреднения (без учета взаимного влияния кристаллитов друг на друга) и самосогласованной модели (с учетом взаимного влияния кристаллитов)
- д) Получены основные закономерности эволюции поверхности нагружения на основе вычислительных экспериментов с микромеханическими моделями
- е) Исследовано влияние параметров микромеханических моделей монокристаллов при использовании самосогласованной схемы осреднения поликристалла.
- ж) Выполнена идентификация реономных параметров феноменологической модели сегнетоэлектроупругого материала на основе вычислительных экспериментов с микромеханическими моделями.
- Проведено сравнение прогнозов рассматриваемых моделей с результатами экспериментов для материала PZT PIC-151.

Спасибо за внимание

Вспомогательные формулы

$$\begin{cases} \underline{\tilde{\varepsilon}}^{\alpha} = \sum_{I} A^{\alpha I} \begin{bmatrix} {}^{4} \underline{S}^{E,I} \cdots \underline{\sigma} + \underline{E} \cdot {}^{3} \underline{d}^{I} \end{bmatrix} \\ \underline{\tilde{D}}^{\alpha} = \sum_{I} A^{\alpha I} \begin{bmatrix} {}^{3} \underline{d}^{I} \cdots \underline{\sigma} + \underline{k}^{\sigma,I} \cdot \underline{E} \end{bmatrix} \end{cases}$$

$$\begin{bmatrix} \underline{A}^{\varepsilon\varepsilon(k)} & \underline{A}^{\varepsilon D(k)} \\ \underline{A}^{D\varepsilon(k)} & \underline{A}^{DD(k)} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 4 \underline{C}^{D,t(k)} & -\frac{3}{\underline{h}}^{t(k)^{T}} \\ -\frac{3}{\underline{h}}^{t(k)} & \underline{\beta}^{\varepsilon,t(k)} \end{bmatrix} + \begin{bmatrix} 4 \underline{C}^{D,*} & -\frac{3}{\underline{h}}^{*,T} \\ -\frac{3}{\underline{h}}^{*} & \underline{\beta}^{\varepsilon,*} \end{bmatrix} \end{bmatrix}^{-1} \begin{bmatrix} \begin{bmatrix} 4 \underline{C}^{D,0} & -\frac{3}{\underline{h}}^{0,T} \\ -\frac{3}{\underline{h}}^{0} & \underline{\beta}^{\varepsilon,0} \end{bmatrix} + \begin{bmatrix} 4 \underline{C}^{D,*} & -\frac{3}{\underline{h}}^{*,T} \\ -\frac{3}{\underline{h}}^{*} & \underline{\beta}^{\varepsilon,*} \end{bmatrix} \end{bmatrix}$$

$$\begin{cases} \underline{\underline{P}}_{i} = (1 - \underline{a}_{i} \cdot \underline{n})\underline{\underline{c}}_{i}\underline{\underline{c}}_{i} + (\underline{a}_{i} \cdot \underline{n})\underline{\underline{\underline{E}}} + \sin(\widehat{\underline{a}}_{i}, \underline{\underline{n}})\underline{\underline{c}}_{i} \times \underline{\underline{\underline{E}}}, \\ \underline{\underline{c}}_{i} = \frac{\underline{a}_{i} \times \underline{n}}{|\underline{a}_{i} \times \underline{n}|} \end{cases}$$

Система упрочнения для склерономной модели

$$\dot{G}^{\alpha}_{c} = \sum_{\beta} H^{\alpha\beta} \dot{f}^{\beta}$$

$$\begin{cases} H^{\alpha\beta} = H \cdot diag\{1, 1, 1, ..., 1\} \\ \dot{G}^{\alpha}_{c} = H \dot{f}^{\alpha} \\ \\ \beta : I \rightarrow J \\ \beta : I \leftarrow J \end{cases}$$

если lpha активна, то

$$G_c^\beta = G_c^0$$