

Выпускная работа бакалавра техники и технологий по направлению 150300 «Прикладная механика»

Конечно-элементное моделирование и исследование пространственного напряженнодеформированного состояния бака с жидкостью под действием сейсмических нагрузок

Выполнил студент гр. 4055/1

Руководитель, к.т.н., профессор

Соруководитель, ведущий инженер

А.В. Лукин А.И. Боровков В.С. Модестов

Санкт-Петербург 2012

Содержание

- 1. Основы расчета конструкций на сейсмостойкость
- 2. Методы расчета конструкций на сейсмостойкость
- 3. Исследование методов расчета на сейсмостойкость применительно к жестко заделанной на концах балке
- 4. Основы расчета резервуаров с жидкостью на сейсмическое воздействие
- 5. Определение собственных частот колебаний жидкости в резервуарах.
- 6. Расчет резервуаров на сейсмическое воздействие с учетом присоединенных масс жидкости.

Свободные и вынужденные колебания линейного неконсервативного осциллятора

Свободные колебания:

Вынужденные колебания:

$$\ddot{x} + 2\zeta\omega\dot{x} + \omega^{2}x = 0$$
$$x = Ae^{-\zeta\omega t}\sin(\omega_{D}t + \alpha),$$

$$\ddot{x} + 2\zeta\omega\dot{x} + \omega^2 x = -\ddot{X}_0(t).$$

$$x(t) = -\frac{1}{\omega_D} \int_0^t \ddot{X}_0(\tau) e^{-\zeta \omega(t-\tau)} \sin[\omega_D(t-\tau)] d\tau.$$

$$\omega = \sqrt{\frac{k}{m}}; \qquad \zeta = \frac{b}{2\omega m} = \frac{b}{2\sqrt{km}}.$$

 $\ddot{X}_0(t)$ – кинематическое (сейсмическое) возмущение

$$\ddot{x}_a = \ddot{x} + \ddot{X}_0.$$

$$\ddot{x}_a \approx -\omega_D^2 x \approx \omega_D \dot{x}.$$

$$\omega_D = \omega \sqrt{1-\zeta^2};$$

3

Свободные и вынужденные колебания дискретных систем

$$[M]{\ddot{u}} + [C]{\dot{u}} + [K]{u} = -[M]{J_x}\ddot{X}_0(t),$$

Модальная суперпозиция: $\{u(t)\} = \sum_{j=1}^{n} \{\phi_j\} q_j(t)$

$$\ddot{q}_j + 2\zeta \omega_j \dot{q}_j + \omega_j^2 q_j == -\Gamma_j \ddot{X}_0(t),$$

$$\Gamma_j = \frac{\{\phi_i\}^T [M] \{J_x\}}{\|\phi_j\|^2}.$$

Условие ортогональности матрицы диссипации:

$$\{\phi_i\}^T[C]\{\phi_j\} = \begin{cases} 0 & \text{при } i \neq j;\\ 2\zeta \omega_j \|\phi_j\|^2 & \text{при } i = j. \end{cases}$$

Исходная сейсмологическая информация

Спектр отклика $S_a(f,\zeta)$ и амплитудно-частотная характеристика (АЧХ) спектра Фурье акселерограммы землетрясения

Линейный осциллятор:

$$x(t) = -\frac{1}{\omega_D} \int_0^t \ddot{X}_0(\tau) e^{-\zeta \omega(t-\tau)} \sin[\omega_D(t-\tau)] d\tau.$$

$$\frac{1}{2\pi f}S_a(f,\zeta) = S_v(f,\zeta) = 2\pi f S_d(f,\zeta)$$

Синтезированная модель сейсмического воздействия СА-482

- Синтезированная акселерограмма
- Обобщенные безразмерные спектры коэффициента динамичности (СКД)

Поэтажные спектры ответа на отметке 14,1 м в здании реактора АЭС, полученные из расчетов на аналоговые акселерограммы и на CA-482

Метод динамического анализа в расчете на сейсмическое воздействие

- Нелинейные системы прямое пошаговое интегрирование
- Линейные системы метод модальной суперпозиции

Исходная сейсмологическая информация – акселерограммы движения основания

Дискретная линейная система с *п степенями свободы:*

 $\{F_c(t)\} = g[M]\{\ddot{u}_a(t)\}, \qquad \{\ddot{u}_a(t)\} = \sum_{j=1}^n \{\eta_j\} [\ddot{\vartheta}_j(t) + \ddot{X}_0(t)].$ $q_i(t) = \Gamma_i \vartheta_i(t) \qquad \{\eta_i\} = \{\phi_i\} \Gamma_i.$

 $\{F_c(t)\}=g\sum_{j=1}^s [M]\{\eta_j\}\ddot{\vartheta}_{ja}(t).$

 $\{r(t)\}$ - вектор откликов системы

 $F_c(t) = -mg\ddot{x}_a(t)$

 ${r(t)} = [T]{F_c(t)},$ [T] - матрица перехода

 $\label{eq:rt} \{r(t)\} = g \sum_{j=1}^s [T][M] \big\{ \eta_j \big\} \ddot{\vartheta}_{ja}(t).$

Линейно-спектральная теория сейсмостойкости

 $F_c = mgA_{max}S_a(f,\zeta) \qquad \{F_{cj}\} = g[M]\{\eta_j\}A_{max}S_a(f_j,\zeta_j)$

Модальный сейсмический отклик системы:

 ${R_j} = [T]{F_{cj}} = g[T][M]{\eta_j}A_{max}S_a(f_j, \zeta_j)$ Суммарный (расчетный) отклик системы:

Другие методы суммирования, например:

$$a(j) = a(j) + a(j) + a(j) + b(j)$$

$$R_{ak} = \pm \sum_{j=1}^{s} |R_{jk}|. \qquad R_{ak} = \pm \sqrt{\sum_{j=1}^{s} R_{jk}^{2}}.$$

 $R_{ak} = \pm \sqrt{\sum_{j=1}^{s} R_{jk}^{2} + 2\sum_{l=1}^{m} \sum_{r=1}^{m} |R_{lk}R_{rk}|}, \ l \neq r,$

Частота

 $S^{y}_{a}(f_{i},\zeta_{i}),$

Расчет балки на сейсмическое воздействие по линейно-спектральной теории

2

№ частоты

Континуальная расчетная схема балки

Е, Па	2 × 10 ¹¹
<i>ρ</i> , кг/м ³	7800
<i>l</i> , м	17
<i>b</i> , м	0.025
<i>h</i> , м	0.05
<i>I</i> , м ⁴	2.604×10^{-7}

j	22	<i>ω_j</i> , рад/с	f_{J}, Γ ц	м/с²
1	4,71	5,755	0,916	8,855
2	7,86	15,985	2,544	17,722
3	10,996	31,331	4,987	21,582
4	14,137	51,793	8,243	20,368
5	17,279	77,37	12,314	18,165
6	20,42	108,06	17,199	15,521
7	23,562	143,87	22,897	12,436
8	26,704	184,79	29,41	8,911
9	29,845	230,83	36,738	5,204
10	32,987	281,98	44,879	3,924

Круговая частота

Собственные частоты и спектральные ускорения $S_a^y(f_j,\zeta_j)$ балки

$$\omega_n = \frac{\lambda_n^2}{l^2} \sqrt{\frac{EI}{\mu}}, \ n = 1, 2, ... \qquad \lambda_n = \frac{(2n+1)\pi}{2}$$

Физические и геометрические параметры балки

Коэффициент относительного затухания $\zeta = 0.005$

Максимальные модальные перемещения при сейсмическом возмущении:

$$y_{cj}(x) = \frac{1}{\omega_j^2} g A_{max} S_a^y(f_j, \zeta_j) \Gamma_j \phi_j(x)$$

Распределения максимальных перемещений $y_{cj}(x)$, соответствующие первым девяти собственным формам

Модальные изгибающие моменты:

$$M_{cj}(x) = EI \frac{1}{\omega_j^2} g A_{max} S_a^{\mathcal{Y}}(f_j, \zeta_j) \Gamma_j \frac{\partial^2 \phi_j(x)}{\partial x^2}$$

Распределения модальных моментов $M_{cj}(x)$, соответствующие первым девяти собственным формам.

Модальные перерезывающие силы:

Распределения модальных перерезывающих сил $Q_{cj}(x)$, соответствующие первым девяти собственным формам.

Суммарные перемещения и сейсмические усилия, вычисленные по правилу $R_{ak} = \pm \sqrt{\sum_{j=1}^{s} R_{jk}^{2}}$.

$$y_{c}(x) = \sqrt{\sum_{j=1}^{9} y_{cj}^{2}(x)}, \qquad M_{c}(x) = \sqrt{\sum_{j=1}^{9} M_{cj}^{2}(x)}, \qquad Q_{c}(x) = \sqrt{\sum_{j=1}^{9} Q_{cj}^{2}(x)}.$$

Суммарные перемещения, изгибающие моменты и перерезывающие силы, вычисленные по правилу ККСК

Расчет балки на сейсмическое воздействие по линейно-спектральной теории в ANSYS

ANSYS «Single-Point Response Spectrum (SPRS) Analysis»

ANSYS

Тип элемента	Beam188
Количество узлов N_{NODE}	41
Количество элементов $N_{\scriptscriptstyle ELEM}$	40
Количество степеней свободы $N_{\rm DOF}$	82

Метод Хаусхолдера нахождения собственных частот (Reduced mode extraction method).

Главные степени свободы (*Master* Degrees of Freedom) – перемещения u_z

 $M_j^{eff} = \Gamma_j^2 m_j^*.$ $\sum_{j=1}^{10} M_j^{eff} = 153.007$ кг

(92% от полной массы конструкции)

Номер частоты j	Частота <i>f_j</i> , Гц	Эффективная масса M_j^{eff} , кг	$M_j^{eff} / M^{ ext{полн}}$, ед.
1	0,923	114,424	0,690
2	2,543	0,000	0,000
3	4,985	21,936	0,132
4	8,24	0,000	0,000
5	12,308	8,886	0,054
6	17,188	0,000	0,000
7	22,881	4,781	0,029
8	29,387	0,000	0,000
9	36,706	2,982	0,018
10	44,84	0,000	0,000

Распределение максимальных перемещений балки под действием сейсмического возмущения

Распределение суммарного изгибающего момента, полученное в ANSYS, в сравнении с аналитическим решением Распределение максимальных перемещений балки под действием сейсмических нагрузок в сравнении с аналитическим решением

χ, м

Распределение суммарного перерезывающей силы, полученное в ANSYS, в сравнении с аналитическим решением

Исследование влияния коэффициентов относительного затухания

Перемещения, изгибающие моменты и перерезывающие силы для различных значений коэффициента затухания

Расчет балки на сейсмическое воздействие методом динамического анализа в ANSYS

ANSYS Transient Structural Analysis

Тип элемента	Beam188
Количество узлов N _{NODE}	41
Количество элементов N_{ELEM}	40
Количество степеней свободы $N_{\rm DOF}$	82

Сейсмическая нагрузка – переменное по времени ускорение балки в направлении ОZ

ANSYS

Коэффициент относительного затухания $\zeta = 0.005$

$$dt = 0.005 c;$$

$$t^{\text{кон}} = 4.36 \text{ c}$$

Результаты расчета методом динамического анализа

18

Сравнение с линейно-спектральной теорией

Распределение перемещений по длине балки в момент времени *t* = 1.18 *c*, в сравнении с результатом расчета по линейно-спектральной теории

Распределение изгибающего момента по длине балки в момент времени t = 3.39 c, в сравнении с первым модальным изгибающим моментом

Распределение перерезывающей силы по длине балки в момент времени t = 3.47 c, в сравнении с первой модальной перерезывающей силой

Распределение изгибающего момента по длине балки в момент времени t = 3.47 c, в сравнении с первым модальным изгибающим моментом 19

Сравнительный анализ результатов расчета по линейно-спектральной теории и методом динамического анализа

	Линейно- спектральная теория	Метод динамического анализа	δ, %
$ y _{max}, \mathbf{M}$	0.3603	0.3919	8.06
<i>М^{изг} _{max},</i> кН ∙ м	7.473	9.056	17.48
$ Q^{\text{nep}} _{max}$, KH	2.224	3.006	26.01

Сравнительный анализ результатов расчета по ЛСТ и МДА

Вывод: для расчета на сейсмостойкость ответственных конструкций (в особенности, элементов АЭС), имеющих собственные частоты в области преобладающих частот землетрясения, необходимо применять как линейно-спектральный метод, так и метод динамического анализа.

Расчет резервуаров с жидкостью на сейсмическое воздействие с использованием присоединенных масс жидкости

Разделение сейсмического давления жидкости на две части:

- Импульсивная часть
- Конвективная часть

а) колебания жидкости в резервуаре; б) динамическая модель

h-уровень жидкости в резервуаре; d – высота волны; m_1 – кинематическая (конвективная) масса; m_2 – инерционная (импульсивная) масса; h_1 , h_2 – высоты привязки кинематической и инерционной масс; k_1 – жесткость упругих связей; k_{d1} , k_{d2} – коэффициенты демпфирования; B = 2l или 2R – горизонтальный размер резервуара (ширина или диаметр).

Расчетные параметры для определения динамического взаимодействия жидкости с резервуаром

Nº	Наименование	Прямоугольный резервуар	Цилиндрический резервуар
1	Импульсивная масса	$m_2 = m$	$\frac{\hat{h}}{\sqrt{3}}th\frac{\sqrt{3}}{\hat{h}}$
2	Конвективная масса	$m_1 = m \frac{0.53th(1.58\hat{h})}{\hat{h}}$	$m_1 = m \frac{0.46th(1.84\hat{h})}{\hat{h}}$
3	Высота приложения импульсивной силы	$h_2 = 0.38h \bigg[1$	$+ \alpha \left(\frac{m}{m_2} - 1 \right) \right]$
4	Высота приложения конвективной силы	$h_{1} = h \left[1 - \frac{ch(1.58\hat{h}) - \beta}{(1.58\hat{h})sh(1.58\hat{h})} \right]$	$h_{1} = h \left[1 - \frac{ch(1.84\hat{h}) - \beta}{(1.84\hat{h})sh(1.84\hat{h})} \right]$
5	Частота колебаний жидкости	$\omega^2 = \frac{1.58g}{l}th(1.58\hat{h})$	$\omega^2 = \frac{1.84g}{R} th(1.84\hat{h})$
6	Жесткость присоединения конв. массы	$k_1 = \omega^2 m_1$	
7	Коэфф. конвективной силы	$\theta_h = \frac{1.58S_d(\omega)}{l} th(1.58\hat{h})$	$\theta_h = \frac{1.84S_d(\omega)}{R} th(1.84\hat{h})$
8	Импульсивная сила	$P_2 = m_2 g A_{max}$	
9	Конвективная сила	$P_1 = m_1 g \theta_h sin \omega t$	$P_{1} = 1.2m_{1}g\theta_{h}sin\omega t$
10	Максимальная высота волны	$d_{max} = \frac{0.527 lch(1.58\hat{h})}{\frac{g}{\omega^2 \theta_h l} - 1}$	$d_{max} = \frac{0.408Rch(1.84\hat{h})}{\frac{g}{\omega^2 \theta_h R} - 1}$

Определение собственных частот колебаний жидкости для прямоугольного резервуара

Жидкость	Вода при <i>T</i> = 25° <i>C</i>
Модуль объемного расширения <i>k,</i> Па	2.2 × 10 ⁹
Плотность $ ho$, кг/м ³	998
Динамическая вязкость, Па · с	8.9×10^{-4}

Конечно-элементная модель жидкости в прямоугольном резервуаре

Метод Хаусхолдера нахождения собственных частот (Reduced mode extraction method). Главные степени свободы (Master Degrees of Freedom) – вертикальные перемещения u_z . В расчете учитывалась сила тяжести.

Тип элемента	FLUID80
Количество узлов N _{NODE}	1152
Количество элементов N_{ELEM}	847
Количество степеней свободы $N_{{\it DOF}}$	3456

Собственные формы и собственные частоты колебаний жидкости

Исследование зависимости первой собственной частоты от относительной глубины резервуара

Аналитическое выражение для первой частоты:

$$f_1 = \frac{1}{2\pi} \sqrt{\frac{g\pi}{L} th(\pi \hat{h})}.$$

 $\hat{h} = h/L$ – относительная глубина резервуара

Относительная глубина резервуара \hat{h}

Векторное поле перемещений на первой частоте колебаний жидкости $f_1 = 0.37711$ Гц

Определение собственных частот колебаний жидкости для цилиндрического резервуара

Жидкость	Вода при <i>T</i> = 25° <i>C</i>
Модуль объемного расширения <i>k,</i> Па	2.2×10°
Плотность ρ , кг/м ³	998
Динамическая вязкость, Па·с	8.9×10^{-4}

Конечно-элементная модель жидкости в цилиндрическом резервуаре

Метод Хаусхолдера нахождения собственных частот (Reduced mode extraction method). Главные степени свободы (Master Degrees of Freedom) – вертикальные перемещения u_z . В расчете учитывалась сила тяжести.

Тип элемента	FLUID80
Количество узлов N _{NODE}	3531
Количество элементов N _{ELEM}	3300
Количество степеней свободы N _{DOF}	10593

Собственные формы и собственные частоты колебаний жидкости

Исследование зависимости первой собственной частоты от относительной глубины резервуара

Векторное поле перемещений на первой частоте колебаний жидкости $f_1 = 0.39$ Гц

Аналитическое выражение для первой частоты:

$$f_1 = \frac{1}{2\pi} \sqrt{\frac{1.84g}{R} th(1.84\hat{h})}.$$

 $\hat{h} = h/R$ – относительная глубина резервуара

Относительная глубина резервуара \hat{h}

Определение собственных частот колебаний жидкости для кольцевого резервуара

Жидкость	Вода при <i>T</i> = 25° <i>C</i>
Модуль объемного расширения <i>k,</i> Па	2.2×10 ⁹
Плотность $ ho$, кг/м ³	998
Динамическая вязкость, Па·с	8.9×10^{-4}

Конечно-элементная модель жидкости в кольцевом резервуаре

Метод Хаусхолдера нахождения собственных частот (Reduced mode extraction method). Главные степени свободы (Master Degrees of Freedom) – вертикальные перемещения u_z . В расчете учитывалась сила тяжести.

Тип элемента	FLUID80
Количество узлов N _{NODE}	3696
Количество элементов N _{ELEM}	3080
Количество степеней свободы N _{DOF}	11088

Собственные формы и собственные частоты колебаний жидкости

Исследование зависимости первой собственной частоты от относительной глубины резервуара

Векторное поле перемещений на первой частоте колебаний жидкости $f_1 = 0.33$ Гц f_1 , Гц

Не существует аналитической оценки для первой собственной частоты

$$R^{out}/R_{int} = 2; \ \hat{h} = h/R^{out}$$

Относительная глубина резервуара \hat{h}

Расчет резервуаров на сейсмическое воздействие с учетом присоединенных масс жидкости в ANSYS

Е, Па	2×10^{11}
<i>ρ</i> , кг/м ³	7800
Длина <i>l</i> , м	6
Ширина b, м	3
Высота h, м	2
Толщина стенок t, м	0.01

Коэффициент относительного затухания $\zeta = 0.005$

Модальный анализ:

Тип элемента	SHELL181
Количество узлов <i>N_{NODE}</i>	1156
Количество элементов <i>N_{ELEM}</i>	1125
Количество степеней свободы N _{DOF}	6936

 $f_1 = 2.87$ Гц; $f_{40} = 43.81$ Гц. $f_{
m YH\Pi} \cong 33$ Гц.

Результаты расчета по линейно-спектральной теории

.01045 .00209 .00627 .01463 101881

.166E-06 .277E-06 .387E-06 .443E-06 .1118-04 .553E-07 .4988-06

Результаты расчета по линейно-спектральной теории

Исследование влияния коэффициентов относительного затухания

Абсолютные перемещения и эквивалентные напряжения для различных значений коэффициента затухания

Результаты расчета методом динамического анализа

Сравнение результатов расчета по линейно-спектральной теории и методом динамического анализа

Вывод: линейно-спектральная теория сейсмостойкости не даёт запаса при вычислении перемещений и напряжений в прямоугольных резервуарах, если резервуар обладает собственными частотами в области преобладающих частот землетрясения.

Расчет цилиндрического резервуара по линейно-спектральной теории сейсмостойкости

			1	
		Ħ		
		目	1H	
WITE -		111	111	1

<i>Е</i> , Па	2×10^{11}
<i>ρ</i> , кг/м ³	7800
Радиус <i>R</i> , м	4
Высота <i>h</i> , м	6
Толщина стенок t, м	0.001

Коэффициент относительного затухания $\zeta = 0.005$

Тип элемента	SHELL181
Количество узлов <i>N_{NODE}</i>	1370
Количество элементов N _{ELEM}	1340
Количество степеней свободы N _{DOF}	8220

Результаты расчета по линейно-спектральной теории

Сравнение результатов расчета по линейно-спектральной теории и методом динамического анализа

Распределение перемещений u_{sum} вдоль прямой $\{x = 0; y = R\}$ при t = 0.48 c в сравнении с результатом по ЛСТ

Распределение напряжений σ^{Mises} вдоль прямой $\{x = R; y = 0\}$ при t = 0.48 c в сравнении с результатом по ЛСТ

Вывод: при расчете цилиндрических резервуаров на сейсмическое воздействие необходимо наряду с линейно-спектральным методом проводить и динамический анализ, в случае если одна или несколько собственных частот резервуара ниже $f_{\rm YH\Pi} \cong 33 \ \Gamma \mu$ – «частоты нулевого периода».

Заключение

- Изучены общие принципы расчета на сейсмостойкость и способы задания исходной сейсмологической информации
- Рассмотрены способы учета влияния жидкости на колебания конструкций
- Сравнительный анализ методов расчета на сейсмостойкость для балки, а также резервуаров различной формы, показал, что наряду с расчетом по линейно-спектральной теории необходим динамический анализ конструкций (прежде всего, сооружений и элементов АЭС)
- Направление дальнейших исследований: решение динамической связанной задачи гидроупругости при расчете резервуаров с жидкостью на сейсмическое воздействие