

Санкт-Петербургский государственный политехнический университет Физико-механический факультет Кафедра «Механика и процессы управления»

Магистерская работа по направлению 150300 «Прикладная механика»

Конечно-элементное моделирование и исследование пространственного напряженнодеформированного состояния блока диагностики ИТЕР

Выполнил студент группы 6055/11 Руководитель, к. т. н., профессор Соруководитель, ассистент Буслаков И. В. Боровков А. И. Модестов В. С.

Санкт-Петербург 2012 год

СОДЕРЖАНИЕ

- ОБЩИЕ СВЕДЕНИЯ О ТЕРМОЯДЕРНОМ РЕАКТОРЕ ИТЕР;
- МОДЕЛЬНЫЕ ЗАДАЧИ: ОБОСНОВАНИЕ НЕОБХОДИМОСТИ, ПОСТАНОВКА, РЕШЕНИЕ;
- БЛОК ДИАГНОСТИКИ ИТЕР: ТЕМПЕРАТУРНЫЙ АНАЛИЗ, АНАЛИЗ ТЕРМОНАПРЯЖЕННОГО СОСТОЯНИЯ;
- БЛОК ДИАГНОСТИКИ ИТЕР: ИССЛЕДОВАНИЕ ЦИКЛИЧЕСКОЙ ПРОЧНОСТИ;
- ЗАКЛЮЧЕНИЕ

Национальный исследовательский университет СПбГПУ

ФизМех ф-т, кафедра "Механика и процессы управления"

Управляемый термоядерный синтез

ИТЕР (ITER) – Международный экспериментальный термоядерный реактор

 $_{1}^{2}H + _{1}^{3}H \rightarrow _{2}^{4}He + _{0}^{1}n + 17.6$ МэВ

Токамак – ТОроидальная КАмера с МАгнитными Катушками. Предназначен для магнитного удержания плазмы

Реакция дейтерий-тритий

Схема классического токамака

Сведения об ИТЕР и его компонентах

габаритные размеры реактора - 40 × 40 метров

- 1 центральный соленоид (индуктор);
- 2 катушки полоидального магнитного поля;
- 3 катушка тороидального магнитного поля;
- 4 вакуумная камера;
- 5 криостат
- 6 дивертор

Термоядерный реактор ИТЕР с указанием основных составляющих Кремниевые зеркала – диагностический элемент блока диагностики томсоновского рассеяния

Модельная задача об охлаждении цилиндра

		1	¢	E	ę	뉟	Ħ	¥	2	2	5		
1	\overline{q}	ŏ	2	Э	đ	Ξ	R	Ð	Q	5	5	à	
a	6	Q	2	н	Ð	4	Ħ	Ð	e	Ð	2	Z	З
4	f	ĥ	F)	Ŧ	Ħ	+	Þ	Ð	Ŧ	Ħ	F	Ŧ	ł
5	۲	e	Đ	Ļ	H	Ŧ	Ħ	Ĥ		Ħ	ŧ	t	t
R	ð	X	5	ú	p		Ħ	Ħ	Ę,	5	¢,	9	9
	X	8	8	ž	H	ŧ	в	ţÌ	ð	8	6	Ģ	í.
N,	h	Q	Z	X	3	F	B	R	X	X	а	1	n
м	н	J	n	h	7-	Þ	Ħ	Р	М	n		1	И
J.	N	n	h		L				ч	Н	1	ł	k
L.	U	Ν	2		Г	Г	Г			И	1	ł	ſ
nu	М	N		П	t-	F	Н	м	r	IJ	И	1	n
н	Ν		1	М	ь	⊢		н	м	Γ1	и	1	И
J.	N	I	h		L	L			н	И		4	k
Ŀ	IJ	۲	ч			Г	Г		Ц	Н	п	ł	ſ
n,	Ľ	N			r	F	H	r		u	И	1	ŋ
N.	Ν	ų		n	⊢	┝─	Н	н	n	IJ	ч	1	n
л	Ν		۲	ч	h	L		н	Н	п	U	4	h
U.	IJ	n	h						н	Н	1	4	u
Ľŀ.	U	Ν	ч		Г	F	Н			и	М	J	ſ
n.	Π	N			t-	⊢	Н	н	n	IJ	И	1	n
л	N	J	m	h	⊢	⊢		н	н	п	ч	4	И
J.	Ы	ľ	N		L.			Ц	Н	И		4	L
Lŀ	L	Ν	ы		17	Г		ГΙ		Н	1	ł	ſ
n.	Ľ	N	L	П	r	F	Н		ГΙ	ы	И	1	n
	p	ų		D	t-	h	H	H	h		А	1	ľ
	Ν	U	n	h	Ь			Н	H	М		1	ŀ
	μ		Ν		L					И		4	1
Ŀ		Ν	μ		Γ	Г	1			μ	r	J	ſ
	ľ	H			h	F	H	h			4	1	ľ
	N	U	ľ	h	F	┣		H	Н	Π		1	ľ
N,	N	1	N	ч	L			Ц	Н	И		4	L
L)	L	Ν	ы		1.	Г		Г		Н	1	ł	ſ
ГŅ	Ľ	N	L	П	Г	F	Н		Г	ы	М	1	n
N	Ν	N	П	М	ŀ-	⊢	Н	н	М	r	И	1	n
м	N	J	n	h	⊢	L			н	п		4	l
U1	N	۲	N		L	Г			Ч	И	n	ł	L
D.	U	Ν	ы		Γ-	Г					Н	ŀ	ſ
n.	N	N	L	n	Þ	⊢	Н	н	n		И	1	n
н	н	J	n	h	┝─	Ь	Н	┝	ł	n	u	ł	Н
U1	N	C	h	4	L			_	И	М	ГJ	ł	u
1	L	M	N		Ľ	Г		Γ.		И	n		ſ
Π.	Π	N			r	t-	М	۲	T	Ц	н	1	η
н	Ν	N	П	Н	h	⊢	⊢	┢	М	Γ.	Ц	1	a
11	н		n	N	∟	L	L	₽	ł	М	IJ	4	1
U.	IJ	n	ч		L	17	Г		L	\mathbf{r}	п	ł	1
18	n	N			Г	Г		r	11	Ч	Н	Ŀ	4
	Ν	N		n	⊢	⊢	⊢	۲	t1		И	1	ł
U.	Ν		n	ч	⊷	⊢	⊢	₽	Н	n	Ц	1	ł
16	N	ľ	N	4	L		L	L	Ч	М	ſ	ł	1
	U	۲	ч		Г	Г	Г	Г		\mathbf{r}	И	J	1
1	Ľ	N		П	r-	F	F	r	tī	L	н	l	4
01.	Ν	J		М	ь	⊢	⊢	ł	h	Γ.	И	1	a
	Ν		N	h	μ.	L	L	Ļ	┢	n	IJ	4	1
1	IJ	n	N		L	Ľ	Г		L	н	П	ł	1
n.	Ľ	Ν	ч		Г	Г	Г	r		μ	Н	ŀ	4
	ľ	N			r-	t-	r	r	Г		Н	1	1
DH.I	Ν	J	П	н	ь	⊢	⊢	₽	М	r	и	1	ł
	Ы		h	E.		L		L	┢	М	IJ	X	1
	N	n	H		L	Г	Г	L	L	1	r	J	1
	U	n	ч		Г	Г	Г	Г			Н	J	4
н.	п	N		n	F	⊢	⊢	۲	t1		И	1	4
DH.	Ν	L.	n	н	┝╌	⊢	⊢	⊦	H	r.	Ц	1	ł
11	N	ľ	h	-	L	L		L	Н	М	ſJ	4	1
	IJ	٦	N		L	Г	Г	١.		\sim	n	ł	1
11	U	N			r	Г	۲	r	L	Ч	н	1	4
н.	Ν	ų	1	۲	h	⊢	⊢	ł	h	Γ.	И	1	a
	Ν		r	ы	μ.	L.	Ŀ	₽	ł	п	u	4	
16	N	ľ	h	ч	L		L		μ	И	П	Л	1
E.	U	Ν	~	L	Г	Г	Г	r	L	2	Н	J	1
	ľ	N	L.	ſ	1-	r-	t	۲	Г	L	Р	ſ	1
H	Ν	J	n	Н	ь	⊢	⊢	⊦	ł٢	٢I	L	М	ł
	Ν		h	h		L	L	L	┢	٢		И	ŀ
	N	h	5	L	L	Г	Г	L	L	ł	r	U	1
	Ľ	h	h		Г		Г	Г	Ľ	L	М		4
	P	Ы	Ľ	Ľ	F		H	F	r	[]	h	1	1
H		L	P	h	┣		L	₽	┢	r	ν	И	
I.	1	Ľ	h	L	L		L	L	Ŀ	ł	٢	И	1
	Ľ	h	κ.	L	Г		Г	Г	L	P	r	J	1
	P	Ν	L.	Γ	r-	F	t	۲	Г	L	М	1	1
	ŀ	L	P	h	h		1	┢	۲	ſ	L	h	I
Ψ	٨	Ľ	h	Ь	1	L	L	L	┢	٢	Γ.	И	1
1	C	Ľ	h	L	L	Г	Г		L	ł	r	J	٢
	1	9	L,		Г		Г	Г	L	L	٢		
			1			-	Ŀ	-					

$$u_{t} = a^{2}\Delta u \qquad u = u(r, \varphi, t) \qquad a^{2} = \frac{k}{c\rho}$$
$$\frac{\partial^{2}u}{\partial r^{2}} + \frac{1}{r}\frac{\partial u}{\partial r} + \frac{1}{r^{2}}\frac{\partial^{2}u}{\partial \varphi^{2}} = \frac{1}{a^{2}}\frac{\partial u}{\partial t}$$

u = ?

Начальное условие: $u(r, \varphi, 0) = 100^{\circ}C$ Граничное условие: $u(r_0, \varphi, t) = 0^{\circ}C$

*r*₀ = 0.1 м – радиус цилиндра

NELEM	NNOD	NDOF
17 700	75 399	226 197

Модельная задача об охлаждении цилиндра

На оси цилиндра получаем:

Температура (КЭ	Температура	Расхождение,	Расхождение,
постановка), °С	(аналитическое решение), °С	°C	%
75,85	75,94	0,09	0.1

$$\frac{u(r,t)}{u_0} = 1.6 \ e^{-5.76\vartheta} - 1.07 \ e^{-30.47\vartheta}$$

(*) – R. Siegel, J.R. Howell. Thermal Radiation Heat Transfer, Taylor & Francis, 1992

Т^{призмы} (t=0) = 2000°R;

Согласно источнику (*),

 ε = 1 - коэффициент черноты

Модельная задача об охлаждении призмы

Модельная задача об охлаждении призмы

Модельная задача о тепловом расширении

NELEM	NNOD	NDOF
10 000	46 541	139 623

Модельная задача о тепловом расширении

Блок диагностики ИТЕР: геометрическая и КЭ модели

NELEM	NNOD	NDOF
508 182	581 928	1 524 546

Блок диагностики ИТЕР: распределение материалов и их свойства

Свойства материалов при 100 °С

Материал	р, кг/м ³	Е, ГПа	μ	к , <u>Вт</u> м °С	μ	α·10 ⁻⁶ , ⁰ C ⁻¹
SS304	7869	190	0.3	16	509	16.2
Si	2330	150	0.3	155	690	2.5
SiC	2500	215	0.2	160	690	2.4

d1, d2, d3, d4, d5 – зоны, в которых известна мощность излучения

Значения плотности мощности излучения, МВт/см³

	d1	d2	d3	d4	d5
SS304	45	1.6	1.4	0.12	0.08
Si	21	0.38	0.28	0.059	0.011

Постановка с учетом теплового излучения

НУ: Тнач = 100 °С

Постановка без учета теплового излучения

НУ: Тнач = 100 °С

Основные ГУ (нагрев): Основные ГУ (нагрев): 0.3 Т блоков защиты = 100 °C; Т блоков защиты = 100°С; 0.85 объемное объемное тепловыделение (зоны d1-d5) тепловыделение (зоны d1-d5); тепловое излучение с коэффициентами ε = 0.85 и ε = 0.3; Т окружающей среды = 100 °C; ГУ (охлаждение): Т блоков защиты = 100 °C ГУ (охлаждение): Элементы конструкции Т блоков защиты = 100 °C с приложенными ГУ теплового тепловое излучение с излучения коэффициентами ε = 0.85 и ε = 0.3;

Динамика изменения температуры в конструкции в течение рабочего дня, °С

Распределение температуры в конструкции в конце последнего нагрева, °С С учетом излучения Без учета излучения

100 120.72 141.44 162.16 182.88 110.36 131.08 151.8 172.52 193.24

100 123.61 147.63 171.44 183.35 195.26 111.9 135.72 159.53 183.35 207.16

Местоположение двух точек, в которых проводится более подробное исследование зависимости T(t):

T(t) для точек 1, 2 без учета излучения

Блок диагностики: анализ термонапряженного состояния

Граничные условия:

- •Фронтальные ролики: $U_v = 0, U_z = 0;$
- •Боковые ролики: $U_z = 0;$
- •«Носик» конструкции: $U_x = 0$.
- •Температура: соответствует
- распределению на последнем шаге температурного анализа

Предел текучести для стали 304 при T = 200°С равен: σ_y = 144 МПа

Критерий пластичности Мизеса: $\sigma_i > \sigma_y$

$$\sigma_i = \sqrt{3J_2} = \sqrt{\frac{(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 + 6(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2)}{2}}$$

Сверху: поле эквивалентных по Мизесу напряжений в конце последнего нагрева (расчет без учета излучения), МПа

Справа: поле перемещений в конце последнего нагрева (расчет без учета излучения), мм

Блок диагностики: исследование циклической прочности

>>1015

>>1015

1.42·10¹⁵

1

2

3

>>1015

6.75·10¹³

1.48·10¹¹

Блок диагностики: исследование циклической прочности

Исследование по относительной деформации

Поле относительных деформаций в конце последнего нагрева (без учета теплового излучения), %

Зависимость относительной деформации стали SS304 от числа циклов

3

>109

Блок диагностики: исследование циклической прочности

Допускаемое число циклов работы конструкции, согласно расчету по относительной деформации, составляет не менее [N₀]=10⁹.

0.036

Допускаемое число	Накопленное усталостное
циклов [N ₀]	повреждение а
10 ⁹	0.0000365

деформациям, для всех трех исследуемых точек имеем:

С учетом расчетов по амплитуде напряжений и по относительным

N = 365·10·10 = 36 500 (10 циклов в сутки в течение 10 лет).

Число циклов за срок в 10 лет принимается равным:

[N₀]_i – допускаемое число циклов i-го типа; $a - накопленное усталостное повреждение, предельное значение: <math>[a_N] = 1$.

k – общее число типов циклов;

 $\sum_{i=1}^{k} \frac{N_i}{1} = a < [a_{i}]$

Заключение

- В работе были даны общие сведения о термоядерном реакторе ИТЕР и принципе его работы;
- Были проделаны три модельные задачи: проведено обоснование их необходимости, постановка, решение;
- Для блока диагностики томсоновкого рассеяния ИТЕР: проведены температурный анализ, анализ термонапряженного состояния;
- Двумя способами проведено исследование циклической прочности блока диагностики и дан прогноз накопленного усталостного повреждения;
- По итогам всех расчетов сделаны соответствующие выводы

СПАСИБО ЗА ВНИМАНИЕ!