

Конечно-элементный анализ сейсмического воздействия на судейскую вышку

Выполнил студент гр.6055/11

Никиташин О.В.

Руководитель, к. т. н., профессор

Боровков А.И.

Консультант, ассистент

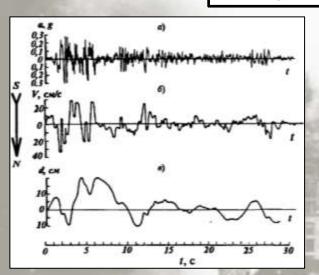
Климшин Д.В.

Санкт-Петербург 2012

Крупнейшие землетрясения с 1900 года:

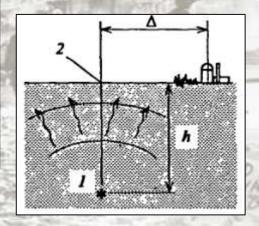
Место	Год	Магнитуда	Погибло	
США, Калифорния, (Сан-Франциско)	1906	7.8	3,000	
Япония (Токио-Йокогама)	1923	8.3	142,800	
Турция (Эрзинджан)	1939 8.0		36,740	
Россия (Камчатка)	1952	9,0	3,000	
Китай (Тянь-Шань)	1976	8.0	290,000	
Гватемала (Гватемала)	1976	7.5	22,084	
Мексика (Мехико)	1985	8.1	10,000	
Армения (Спитак)	1988	6.9	14,000	
США, Калифорния, (Сан-Франциско)	1989	7.0	68,000	
Япония (Кобе)	1995	7.2	6,434	
Турция (Колжаэли)	1999	7.4	50,000	
Индийский океан (землетрясение и цунами)	2004	9.2	230,000	
Китай (Сычуань)	2008	8.0	68,000	
Чили	2010	8.8	800	
Япония	2011	9.0	15,840	

Разрушительные землетрясения угрожают более чем 50 странам мира. Ежегодно происходят сотни тысяч землетрясений, некоторые из них (большой интенсивности) приводят к повреждениям и обрушениям недостаточно прочных сооружений. Часто следствием землетрясений являются большие пожары и, к сожалению, человеческие жертвы.



Национальный исследовательский университет СПбГПУ ФизМех ф-т, кафедра "Механика и процессы управления"

Характеристики землетрясений:



Балл <i>I</i>	Пиковое ускорение грунта (см/с²) в соответствии со шкалами			
	MSK-64	MM	JMA	
0			<0.8	
1		<1	0.8-2.5	
2	1	1-2	2.5-8	
2		2.1-5	8-25	
4		5-10	25-80	
5		10-21	80-250	
6	30-60	21-44	250-400	
7	61-120	44-94	>400	
8	121-240	94-202	l	
9	241-480	202-432		
≥10		>432		

Землетрясения происходят вследствие быстрого выделения в глубине Земли большого количества энергии, приводящего к распространению сейсмических волн, которые проявляются в виде колебаний грунта. Наиболее ощутимые являются следствием тектонических смещений блоков земной коры по разломам.

Для проектирования сейсмостойких сооружений необходимо располагать достоверными количественными характеристиками движений грунта.

Для характеристики землетрясения Гутенберг и Рихтер в 1935 году предложили понятие Магнитуды М (шкала магнитуд, шкала Рихтера). Она определяется на основе инструментальных записей сейсмических колебаний и показывает общее количество энергии, выделившееся при землетрясении. Но характер землетрясений зависят не только от энергии, но и от глубины очага, грунтовых условий и т.д. Поэтому в настоящее время в нашей стране используют Шкалу Интенсивности Землетрясения, разработанную в 1964г. Медведевым, Спонхойром и Карником (MSK-64).

Характеристики положения очага землетрясения: 1)очаг (фокус, гипоцентр); 2)эпицентр; h – глубина очага; ∆ эпицентральное расстояние.

Содержание:

- Рассматриваются основные методы расчета сейсмостойкости конструкций (статический, линейноспектральный (СНиП), динамический).
- Решаются тестовые задачи, направленные на исследование приложения сейсмической нагрузки к сооружению.
- Решаются тестовые задачи, направленные на исследование волновых эффектов, возникающих во время сейсмического воздействия.
- Исследуется конструкции здания судейской вышки в двух различных, с точки зрения приложения сейсмической нагрузки, постановках.
- Исследуется сейсмостойкость конструкции здания судейской вышки под воздействием землетрясения интенсивностью 8.5 баллов (MSK-64) в упругой, упругопластичной постановках.
- Исследуется конструкция здания судейской вышки на «прогрессирующее обрушение» при землетрясении интенсивностью 10.5 баллов (MSK-64).

Статический метод:

Был предложен в 1901г. Японский ученым Омори и доминировал до середины 50-х годов.

Основная особенность: пренебрегают вынужденными колебаниями конструкции, т.е. она рассматривается как абсолютно твердое тело.

Все точки сооружения имеют одинаковые ускорения, равные ускорению основания \ddot{y}_0 . В соответствии с принципом Даламбера, к каждой массе m_i сооружения приложена инерционная нагрузка (сейсмическая сила) s_i :

$$s_i = m_i A g, \qquad [1]$$

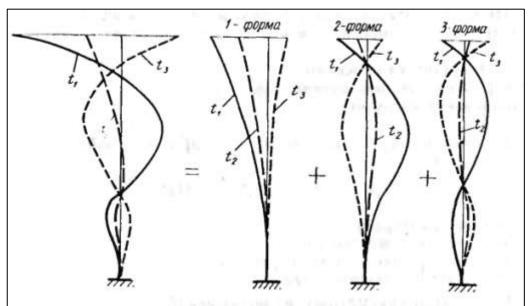
где A — максимальное ускорение основания, выражаемое в долях силы тяжести g.

Силы s_i прикладываются как статические в центре каждый массы m_i и проводят расчет.

<u>Существенный недостаток</u>: невозможность учета в его рамках динамических свойств конструкции! Справедлив только для <u>очень жестких</u> <u>сооружений!</u> ⇒ Большие ошибки в расчетах, которые идут <u>не в запас</u> <u>прочности</u>!

Линейно-спектральный метод:

<u>Является основным</u> как в нашей стране, так и за рубежом. Занимает промежуточное место между статическим и динамическим методами.


Как и при статическом <u>предполагает определение сейсмических</u> <u>инерционных нагрузок</u> s_i , приложенных в центре тяжести массы m_i , а затем силы s_i , <u>прикладываются статически</u>.

<u>Динамические свойства конструкции</u> учитываются при определении нагрузок s_i . Для этого <u>движение системы раскладывают по формам колебаний</u>, т.е. представляется как сумма некоторых движений (форм колебаний):

$$y_i(t) = \sum_{j=1}^n x_{ij} \xi_j(t) = \sum_{j=1}^n y_{ij}(t) \cdot [2]$$

где $y_i(t)$ — смещение массы m_i , зависящее от времени t; x_{ij} — коэффициент разложения движения по формам колебаний (i-я компонента j-о собственного вектора системы); $\xi_j(t)$ — функция, определяющая изменение во времени перемещения по j-ой форме колебаний; $y_{ij}(t)$ — смещение массы m_i по j-й форме колебаний;

n — число степеней свободы системы.

Линейно-спектральный метод:

Сейсмические нагрузки определяются по каждой форме колебаний:

$$S_{ik}^{j} = K_{o}K_{1}S_{0ik}^{j}$$
, [3]

где K_o - коэффициент, учитывающий <u>назначение сооружения</u> и его ответственность, принимаемый по таблице 2.3 [1];

К₁ – коэффициент, учитывающий допускаемые повреждения зданий и сооружений, принимаемый по таблице 2.5 [1];

 S_{0ik}^{j} — значение сейсмической нагрузки для i -й формы собственных колебаний здания или сооружения, определяемое в предположении упругого деформирования конструкций по формуле:

$$S_{0ik}^{j} = g m_k^{j} A K_A \beta_i K_{\psi} \eta_{ik}^{j}, [4]$$

где m_k^j – масса здания или момент инерции соответствующей массы здания, отнесенные к точке k по обобщенной координате j, определяемые с учетом расчетных нагрузок на конструкции согласно [1]; g – ускорения силы тяжести;

A — коэффициент, значение которого следует принимать равным 0,1; 0,2; 0,4 для расчетной сейсмичности 7, 8, 9, баллов соответственно;

 K_A — коэффициент, значения которого следует принимать по таблице 4 [1] в <u>зависимости от</u> <u>сочетаний расчетной сейсмической интенсивности</u> на картах A, B и C (комплекта карт OCP-97); β_i — <u>коэффициент динамичности</u>, соответствующий i-й форме собственных колебаний зданий или

 β_i — **коэффициент динамичности**, соответствующий *i*-й форме собственных колебаний зданий или сооружений, принимаемый в соответствии с [1];

 K_{ψ} – коэффициент, учитывающий **способность здания к рассеиванию энергии**, принимаемый по таблице 2.6 [1];

 η^{j}_{ik} – коэффициент, зависящий от формы деформации здания или сооружения при его собственных колебаниях по i -й форме, от узловой точки приложения рассчитываемой нагрузки и направления сейсмического воздействия, определяемый по [1]

[1] - СП 14.13330.2011 – Строительство в сейсмических районах.

ФизМех ф-т, кафедра "Механика и процессы управления"

Динамический метод:

конца 70-х, благодаря развитию вычислительной техники, стали применять <u>динамические методы</u>.

Для податливых конструкций вкладом вынужденных колебаний

пренебрегать нельзя!

Рассмотрим *вынужденные* <u>колебания линейных дискретных систем</u>:

$$[M]{\ddot{u}} + [C]{\dot{u}} + [K]{u} = {F(t)}, [5]$$

где [M] - матрица масс,

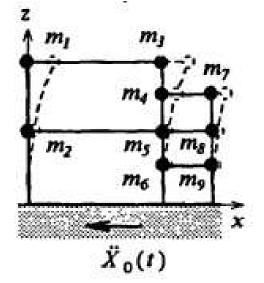
[C] - матрица диссипации энергии,

[K] - матрица жесткостей,

 ${F(t)}$ - вектор нагрузки.

В случае кинематического

возмущения в качестве нагрузки


выступают переносные силы инерции:

$$[M]\{\ddot{u}\} + [C]\{\dot{u}\} + [K]\{u\} = -M\left(\{J_x\}\ddot{X}_0(t) + \{J_y\}\ddot{Y}_0(t) + \{J_z\}\ddot{Z}_0(t)\right), [6]$$

где $\{u\}$ - вектор относительных перемещений;

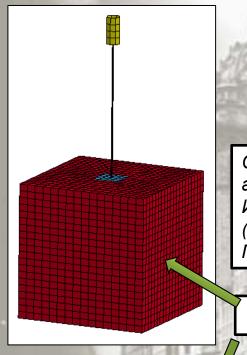
 $\{J_x\},\{J_y\},\{J_z\}$ – векторы, компонентами которых являются косинусы углов между направлениями перемещений по степеням свободы и вектором ускорения основания.

систем дифференциальных уравнений Решения может находиться методами *прямого пошагового интегрирования*.

ntre of Excellence MechLab.ru Compl

Тестовая модель:

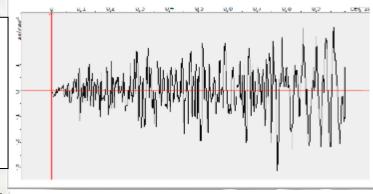
 $M/c^{\wedge}2$

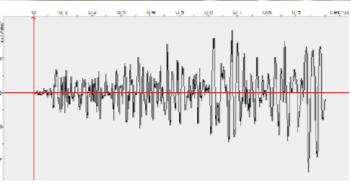

Ускорения по Х,

 $M/c^{\wedge}2$

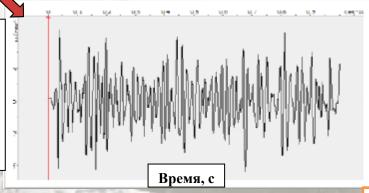
Ускорения по У,

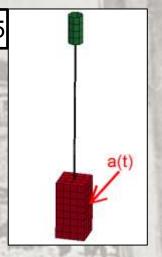
 $M/c^{\wedge}2$


Ускорения по Z,



Синтезированные акселерограммы: Интенсивность:9 баллов (MSK-64).

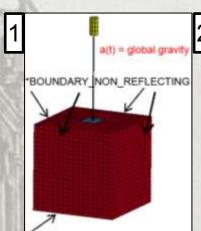

Продолжительность: 10с.

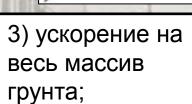

*MAT_ELASTIC

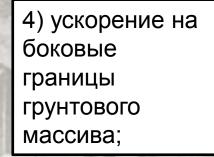
Материал	кг/м ³		Коэффициент Пуассона	
Строительная сталь			0.3	
Бетонный фундамент	2500	3E+10	0.2	
Грунт 1700		1E+07	0.2	

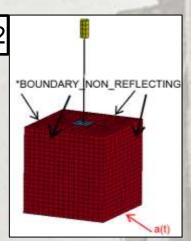
Национальный исследовательский университет СПбГПУ ФизМех ф-т, кафедра "Механика и процессы управления"

Варианты тестовых постановок:

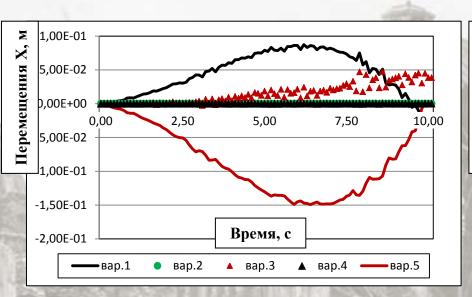

Описание нагрузок, вызываемых сейсмическим воздействием, представляет большую сложность, в связи с отсутствием достаточного количества исследований в данной области, в особенности в динамической постановке, поэтому перед решением основной задачи, были рассмотрены 5 различных случаев.

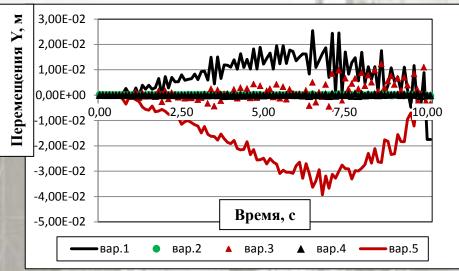

Все расчеты произведены в ПК использующем явную схему интегрирования уравнения движения LS-DYNA.

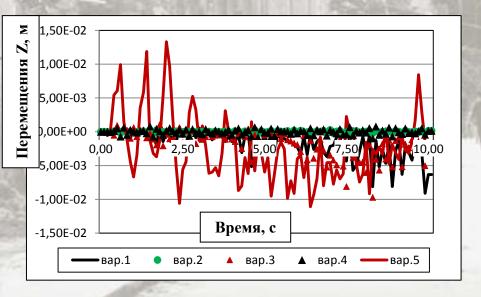

Данный расчетный комплекс позволяет накладывать специальное Г.У.: Условие прохождения волн – для исключения влияния отраженных волн на НДС конструкции [2].


(*BOUNDARY_NON_REFLECTING).

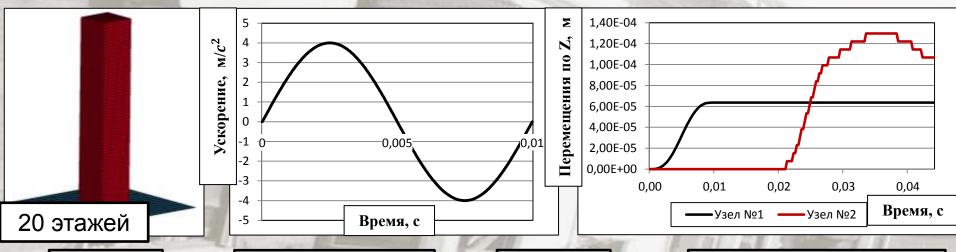
Условия симметрии – ограничение перемещений узлов грани грунтового массива по направлению нормальному к плоскости данной грани. Определение данного рода Г.У. целесообразно для уменьшения размеров КЭ модели;

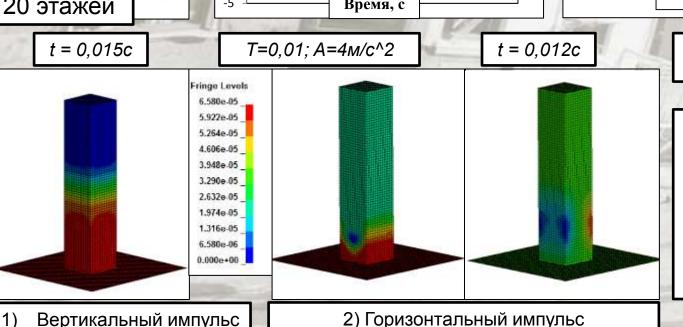



CompMechLab


ФизМех ф-т, кафедра "Механика и процессы управления"

Результаты тестовых задач:




Исследовались относительные перемещения центра масс конструкции на стержне, относительно узла в фундаменте. Bo всех направлениях «наихудшими» оказались 2 постановки (вар.1 и вар.5):

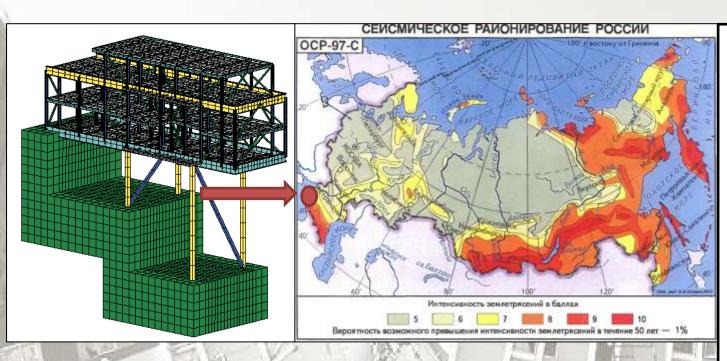
- прикладывается ускорение как глобальная гравитация на все точки модели;
- прикладывается ускорение на фундамент.

Волновые эффекты:

Вертикальный импульс Перемещения по Z

2) Горизонтальный импульс Перемещения по Z и X

Узел №1 в центре основания, Узел №2 в центре покрытия


Скорость распространения продольных волн в упругой среде, для случая плоской волны:

$$c = \sqrt{\frac{E}{\rho(1 - \nu^2)}}, [7]$$

Описание конструкции:

Материал	Плотность	Модуль упругости	Коэффициент Пуассона	
Строительная 7800		2E+11	0.3	
Бетонный фундамент и перекрытия	фундамент и 2500			

Судейская вышка из Олимпийского комплекса горнолыжных трамплинов в г.Сочи. Находится в зоне сейсмической активности. КЭ модель выполнена из Веат (9 различных профилей), Shell (перекрытия), Solid (фундамент) элементов. Содержит: 10386 узлов и 8465 элементов. Исследуем два варианта задания сейсмического воздействия.

Постановка задачи:

$$M\ddot{u} + C\dot{u} + Ku = -M\ddot{u}_0, \qquad [8]$$

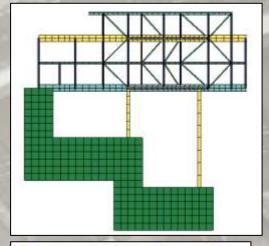
где u — искомый вектор узловых перемещений;

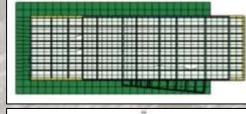
 \dot{u} – вектор узловых скоростей;

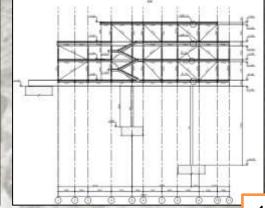
 \ddot{u} – вектор узловых ускорений;

M — матрица масс;

C — матрица демпфирования;

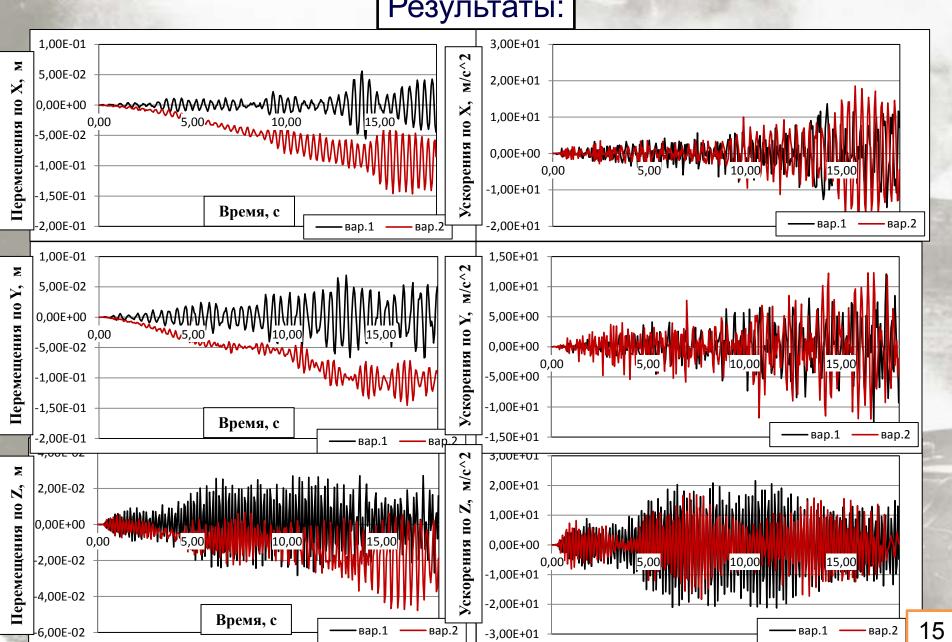

K — матрица жесткости;


 \ddot{u}_0 – вектор ускорений основания.

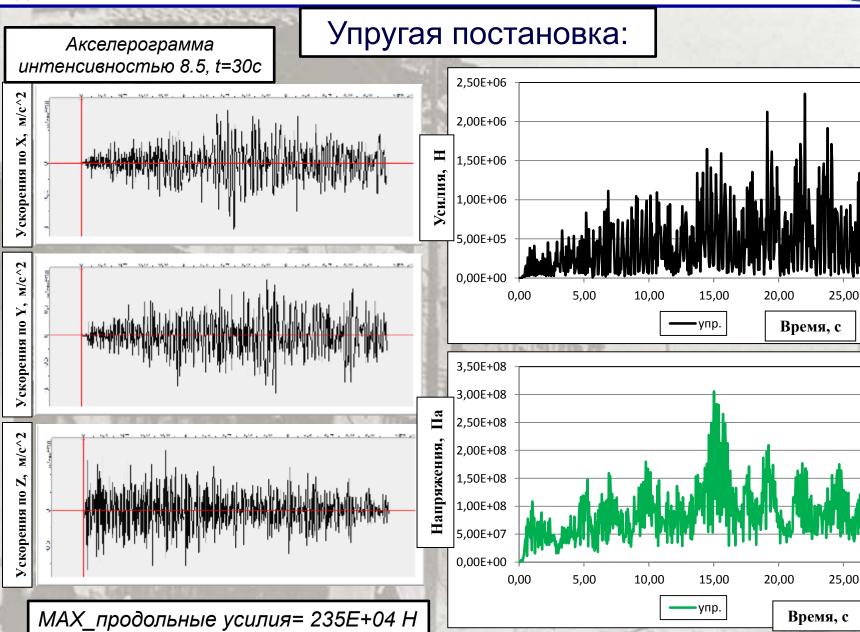

Выполним два варианта расчета рассматриваемого нами здания на трехкомпонентное сейсмическое воздействие в динамической постановке:

- Основание здания примем жестко защемленным, а инерционные силы, вызываемые ускорением движения грунта, приложим непосредственно к сосредоточенным в узлах массам здания, т.е., в соответствии с уравнением (8), примем бесконечную скорость распространения волн.
- Зададим вынужденные ускорения основания в соответствии с исходной трехкомпонентной акселерограммой, таким образом учитывая волновые эффекты.

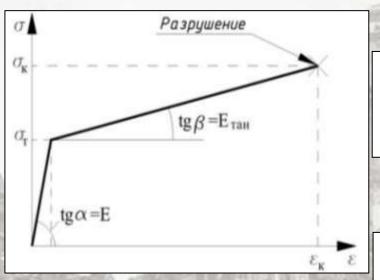
В связи с местоположением данного сооружения СНиП предписывает проверку его сейсмостойкости при сейсмическом воздействии интенсивностью 8.5 балла по шкале MSK-64.



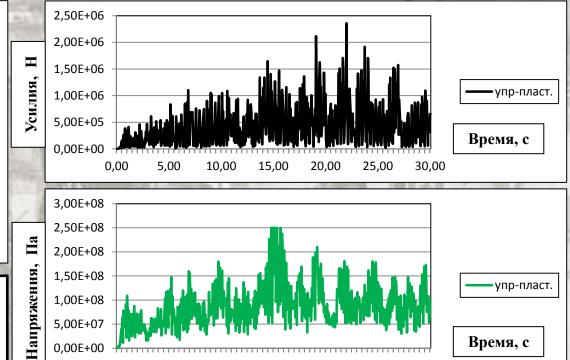
CAD/FEA/CAE Centre of Excellence www.CompMechLab.ru


Результаты:

MAX_V-M stress= *305,38 M*Π*a*


30,00

30,00



Упруго-пластичная постановка:

*MAT_PLASTIC_KINEMATIC пластический материал с кинематическим упрочнением

(B35)

15,00

10,00

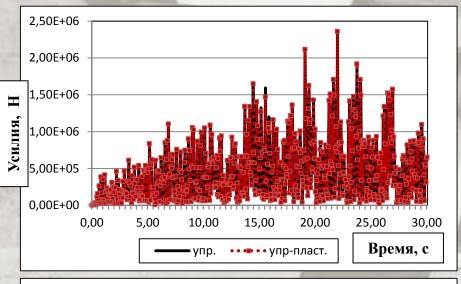
20,00

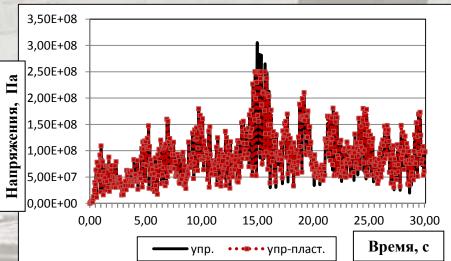
25,00

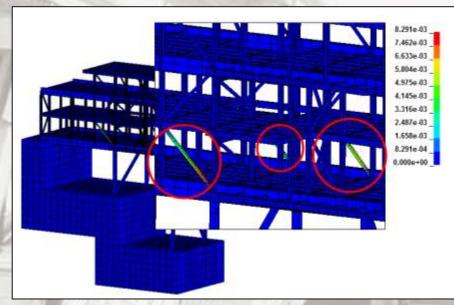
30,00

							and the second s
The County	Материал	Плотность , кг/м ³	Модуль упругости, Па	Коэффициент Пуассона	Предел текучести, Па	Предел прочности, Па	<i>MAX_продольные</i> усилия= 235E+04 H <i>MAX V-M</i>
3340	Строительная сталь (Ст3)	7800	2E+11	0.3	250E+06	280E+06	stress= 250 MΠa
45 Tach	Бетон перекрытий	2500	3E+10	0.2	50E+06	50E+06	

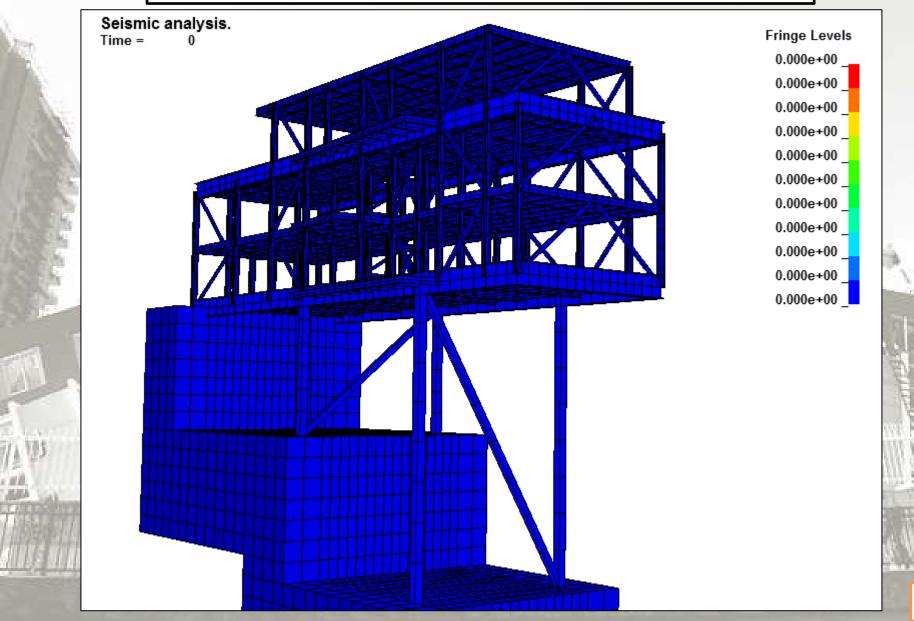
0,00


5,00




ФизМех ф-т, кафедра "Механика и процессы управления"

Сравнение результатов:



Возникают пластические деформации в раскосах первого этажа здания. Целостность конструкции сохраняется и разрушения не происходит. ⇒ Обеспечивается сохранность человеческих жизней и оборудования. ⇒ Удовлетворяет требованиям СНиП!

Расчет на «прогрессирующее» обрушение:

Преимущества прямого динамического расчета:

- Гораздо подробнее стандартных расчетов по линейноспектральной теории, широко применяемой стране. Позволяет отслеживать поведение конструкции под воздействием нагрузки, видеть «физику процесса», проследить динамику поведения сооружений, представить возможный сценарий развития повреждений;
- Расчет производится на реальные, а не на искусственно заниженные нагрузки;
- Появляется судить возможность живучести надежности сооружений, о наличии скрытых резервов, которые невозможно оценить при расчетах по линейноспектральной теории;
- нагрузки может выступать не только качестве <u>землетрясение</u>, но и ветровая, ударная и т.д.

В ходе исследования:

- Рассмотрены основные методы расчета сейсмостойкости конструкций.
- Исследованы различные варианты приложения сейсмических нагрузок и выбраны наихудшие варианты.
- Исследованы волновые эффекты, возникающие в конструкциях при землетрясениях.
- Проведены расчеты здания судейской вышки в двух постановках, с различными способами приложения сейсмической нагрузки.
- Проведен расчет сейсмостойкости конструкции здания судейской вышки под воздействием землетрясения интенсивностью 8.5 баллов (MSK-64) в упругой, упругопластичной постановках.
- Произведен расчет конструкции здания судейской вышки на прогрессирующее обрушение при землетрясении интенсивностью 10.5 баллов (MSK-64).