Санкт-Петербургский государственный политехнический университет Институт прикладной математики и механики Кафедра «Механика и процессы правления»

Моделирование процессов деформирования и разрушения костной ткани на наноуровне

Выполнил: студент ак. г. 4055/1 А.И. Грищенко Научный руководитель: к.ф.-м.н., доц А.С. Семёнов

Содержание доклада

- 1. Введение
- 2. Постановка задачи
- 3. Методы решения
- 4. Полученные результаты

Иерархическая структура костной ткани

Микрофотография костной ткани

Минеральные связи показаны стрелками.

Упругие модули отдельных компонент костной ткани

N⁰	Наименование показателя	Коллаген	Гидроксиапатит
1		0.01-0.57	40–90
2	Модуль упругости (ГПа)	1.2	114
3		1.25	114
4			143
5			0.3
6	коэффициент Пуассона	0.35	0.27

Рабочее окно программы Nanobone

Modeling of bone nano-structure.

Version 1.2

Input variables multiply RVE Collagen Elasticity moduli RVE **Conglomerate Form** Boundary conditions 250 EC 650 W Mx 1 Reflect | (Rectangle Displacement Cx (a,b, I,d, c => w,h, g, m,x 775.0008 C a,b, l,d, g => w,h, c, m,x (y h My 1 Reflect -C Ellipse VC 0.49 C Stress (a,b, l,d, m => w,h, c, q,x Subdivide Conglomerate Congl. h. Elasticity moduli Congl. (hydroxyapatite) Rotate Conglomerate **RVE Summary** O w,h, I,d, c => a,b, q, m,x 79.8099 Eh 65000 ð. nEx 5 V 193750.2 C m,x, l,d, c => a,b, g, w,h fic 0 grad (m,x, l,d, g => w,h, c, w,h b 596.975 nEy1 4 vh 0.2 Vc/V 46.154 % nEy2 3 Vh/V 49.181 Bridge Elasticity moduli Subdivide Bridge Bridge **Rotate Bridges** General Information Vb/V 4.665 % 45.1901 fib 0 nEx 6 Eb 65000 orad Mineralization, 0.7000001 4 50 vb 0.2 Number of d nEy 5 Synchronically Relation, x=b/a 7.479962 2 Num, of Relation, y=l/d 0.903802 Conglomerate/bridge gap Default Read PAN-data Run CES Help Number of RVEs 1 Overlap, o 209.4746 79.7373 С. 178.0258 E mixed 35300.01 Rel. density, h/c 2 g Write PAN-data Run PAN Undo Exit

6

_ 🗆 ×

Основные возможности программы Nanobone

Конечно-элементные модели элементарного представительного объема (ЭПО)

Характерные размеры:

- размеры конгломерата 2500×350 нм
- размеры перемычки 200×30 нм

Отличительной чертой предложенной модели является учет межкристаллической перемычки

Конечно-элементные модели ЭПО наноструктурных элементов костной ткани с различным числом конгломератов.

- а модель П2×2 (суммарно 8 конгломератов и 16 перемычек),
- b модель П3×3 (суммарно 18 конгломератов и 36 перемычек),
- с модель П4×4 (суммарно 32 конгломератов и 64 перемычки).

Методы решения

Осреднение напряженно-деформированного состояния в пределах элементарного представительного объема (ЭПО):

$$\overline{\mathbf{\varepsilon}} = \frac{1}{V_{\Im\Pi O}} \int_{V_{\Im\Pi O}} \mathbf{\varepsilon} \, dV, \qquad \overline{\mathbf{\sigma}} = \frac{1}{V_{\Im\Pi O}} \int_{V_{\Im\Pi O}} \mathbf{\sigma} \, dV \tag{1}$$

Закон Гука для ортотропного материала может быть записан в виде:

$$\overline{\mathbf{\epsilon}} = {}^{4} \overline{\mathbf{C}} \cdot \cdot \overline{\mathbf{\sigma}}$$

$$\begin{bmatrix} \frac{1}{\overline{E}_{1}} & -\frac{\overline{V}_{21}}{\overline{E}_{2}} & -\frac{\overline{V}_{31}}{\overline{E}_{3}} & 0 & 0 & 0 \\ -\frac{\overline{V}_{12}}{\overline{E}_{1}} & \frac{1}{\overline{E}_{2}} & -\frac{\overline{V}_{32}}{\overline{E}_{3}} & 0 & 0 & 0 \\ -\frac{\overline{V}_{13}}{\overline{E}_{1}} & -\frac{\overline{V}_{23}}{\overline{E}_{2}} & \frac{1}{\overline{E}_{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\overline{G}_{12}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\overline{G}_{23}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{\overline{G}_{31}} \end{bmatrix}$$

$$(3)$$

Упругие модули определяются на основе соотношений:

$$\overline{E}_{i} = \frac{\overline{\sigma}_{ii}}{\overline{\varepsilon}_{ii}} \qquad \overline{v}_{ij} = -\frac{\overline{\varepsilon}_{jj}}{\overline{\varepsilon}_{ii}} \qquad (4)$$

При решении задачи в двумерной постановке (плоское деформированное состояние) достаточно найти 4 константы:

$$\overline{E}_1, \overline{E}_2, \overline{\nu}_{12}, \overline{G}_{12}$$

Для определения эффективных упругих свойств ЭПО методом конечных элементов (КЭ) решалась серия краевых задач с различными граничными условиями

Кинематические

Силовые

Локальные

$$\mathbf{u}\Big|_{S_u} = \overline{\mathbf{\epsilon}}^* \cdot \mathbf{r} \tag{5} \qquad \mathbf{n} \cdot \overline{\mathbf{\sigma}}\Big|_{S_\sigma} = \mathbf{n} \cdot \overline{\mathbf{\sigma}}^* \tag{6}$$

Периодические $\mathbf{u}\Big|_{S_{u_1}} = \mathbf{u}\Big|_{S_{u_2}} + \overline{\mathbf{\epsilon}}^* \cdot (\mathbf{r}_1 - \mathbf{r}_2)$ (7)

Оценка точности численных решений

Размеры конгломерата выбирались равными 2500×350 нм, перемычек – 200×30 нм. Этому случаю соответствует минерализация 70%.

перемычек (ячеек периодичности) в ЭПО.

Для ГУ периодичности сходимость достигается уже при использовании ЭПО с одной перемычкой.

а) б) Распределения полей интенсивности напряжений по Мизесу при вертикальном воздействии для разных граничных условий: а) локальных кинематических условий (5), б) кинематических условий периодичности (7).

Видно, что при ГУ периодичности краевые эффекты отсутствуют. 13

Анализ НДС ЭПО с перемычками при различных видах нагружения

ЭПО (1/4 часть)

Влияние наличия перемычек

Деформированное состояние ЭПО при растяжении в горизонтальном направлении на графиках: а) с перемычкой; b) без перемычки; при растяжении в вертикальном направлении на графиках: c) с перемычкой; d) без перемычки. Показаны распределения полей интенсивности напряжений по Мизесу

Распределение интенсивности напряжений вдоль

периметра конгломерата

a)

b)

Сравнение расчетных значений эффективных упругих модулей \overline{E}_2 и \overline{E}_1 для ЭПО с перемычками и без перемычек.

0	Модуль упругости в	Модуль упругости в
	вертикальном	горизонтальном
A MAG	направлении \overline{E}_2 , ГПа.	направлении \overline{E}_1 , ГПа
ЭПО с перемычками	18 <mark>.28</mark>	15.71
ЭПО без перемычек	16.63	13.32
Отличие	9.9%	17.9%

Сравнение расчетных значений эффективных упругих

с экспериментальными данными

-9444	Модуль упругости в вертикальном направлени \overline{E}_{2}^{2} , ГПа	Модуль упругости в горизонтальном направлении \overline{E}_1 , ГПа
КЭ модель ЭПО с перемычками	18.3	15.7
КЭ модель ЭПО без перемычек	16.63	13.32
Katsamanis F. [25]	16.2	Patria Little
Bonfield W. [26]	18.5	9.5
Reilly D.T. [27]	17.0	11.5
Vincentelli R. с соавт. [28]	19.7	
Ashman R.B. с соавт. [29]	20.0	13.5
Meunier A. с соавт. [30]	20.4	12.4
С.Н. Turner с соавт. [31]	20.6	14.9
	23.4	16.5
Lipson S.F. с соавт. [32]	25.0	15.0
Yoon. H.S. с соавт. [33]	27.4	18.8

Влияние углов наклона минерала

Зависимость максимальной интенсивности напряжений от угла поворота центрального конгломерата в фрагменте ЭПО

Влияние угла наклона перемычек

Зависимости эффективных упругих модулей ЭПО нанокомпозита костной ткани от угла поворота перемычек.

Угол отклонения перемычки, о

Горизонтальное воздействие (общий максимум)
 Вертикальное воздействие (общий максимум)
 Горизонтальное воздействие (верхняя точка перемычки)
 Горизонтальное воздействие (нижняя точка перемычки)
 Вертикальное воздействие (верхняя точка перемычки)
 Вертикальное воздействие (верхняя точка перемычки)

Изменение местоположения максимума интенсивности

напряжений

Горизонтальное воздействие

20

Влияние минерализации костной ткани

Зависимость упругих модулей от минерализации (рис. а), ависимость интенсивности напряжений, осредненных по всему объему ЭПО и по объему его отдельных составляющих, от минерализации (рис b).

Анализ влияния сценария роста минерализации

Зависимости упругих модулей ЭПО нанокомпозита костной ткани в зависимости от сценария роста минерализации.

Видно, что при различных сценариях роста минерализации изменения упругих модулей ЭПО нанокомпозита костной ткани в зависимости от минерализации сильно отличаются друг от друга.

Зависимости эффективных упругих модулей ЭПО от степени вытянутости конгломератов

При росте соотношения высоты т ширины конгломерата наблюдается повышение упругих модулей и анизотропии

Влияние коэффициента Пуассона органического матрикса

v

Анализ НДС 3D ЭПО при вертикальном нагружении. Сравнение с 2D ЭПО

Выводы

- Предложена и исследована трехфазная модель костной ткани на субмикроскопическом уровне, учитывающая наличие связи между кристаллами гидроксиапатита в виде твердотельных перемычек.
- Методом конечно-элементной гомогенизации определены эффективные упругие модули элементарного представительного объема нанокомпозита костной ткани. Сравнение с экспериментальными данными показало хорошее совпадение с результатами предложенной модели.
- 3. Выполнена оценка влияния учета перемычек на напряженно-деформированное состояние и эффективные упругие свойства.
- 4. Выполнен анализ влияния разориентации конгломератов и перемычек на напряженное состояние представительного объема.
- 5. Выполнен анализ влияния минерализации ЭПО на напряженное состояние представительного объема и его эффективные модули.
- Исследовано влияние степени вытянутости конгломератов на эффективные упругие модули.
- Выполнена оценка влияния коэффициента Пуассона органического матрикса на механические свойства ЭПО костной ткани.

Направление дальнейших исследований

- 1. Учет вязких свойств органического матрикса.
- 2. Рассмотреть более сложные модели ЭПО.
- 3. Моделирование процессов разрушения ЭПО

Спасибо за внимание!

Базовые параметры ЭПО костной ткани

Параметр		Зачение
ЭПО	Высота h	2995 нм
	Ширина w	1100 нм
Конгломерат	Высота в	2500 нм
	Ширин <mark>а</mark> а	350 нм
Перемычки	Высота d	30 нм
	Ширина 1	200 нм
Угол наклона к	онломерата	0°
Угол наклона г	еремычек	0°
Перекрытие ко	нгломератов с	485 нм
Расстояние мех	кду конгломератами g	495 нм

КЭ сходимость

Зависимость от числа КЭ в модели ЭПО а) эффективных значений модулей упругости \overline{E}_2 (в вертикальном направлении) и \overline{E}_1 в горизонтальном направлении); b) осредненной интенсивности напряжений от числа КЭ в модели ЭПО.

Сходимость достигается при использовании ЭПО с 1500 КЭ

минерализация

→ Ех с перемычками/Ех без перемычек с минерализацией равной случаю с перемычками
— Еу с перемычками/Еу без перемычек с минерализацией равной случаю с перемычками

Зависимости отношений упругих модулей ЭПО сперемычками к упругим модулям ЭПО без перемычек.

Максимальное различие достигается при минерализации 25%

Зависимость степени анизотропии $\overline{E}_2/\overline{E}_1$ от минерализации.

100

m

2