

Конечно-элементное моделирование прочности плетеных конструкций при динамическом ударе

ВЫПУСКНАЯ РАБОТА БАКАЛАВРА

Направление: 150300 «Прикладная механика»

Выполнила: КОКОВЦЕВА А. В.

Руководитель: БОРОВКОВ А. И.

Соруководитель: КЛЯВИН О. И.

Рецензент: МИХАЙЛОВ А. А.

Санкт-Петербург 2013 г.

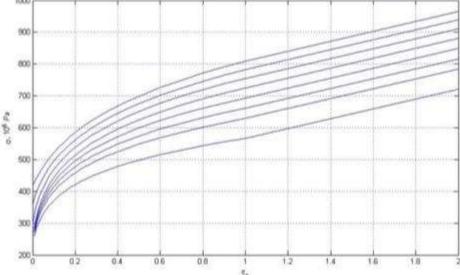
Проблематика и особенности моделирования

- 1. По официальным данным ИКАО за период с 2001 по 2007 гг. было зарегистрировано 42508 случаев столкновений;
- 2. Для гражданских вертолетов, по статистике, 40 % столкновений приходится на двигатели;
- 3. Рассматривается предложение использовать защитные металлические плетеные конструкции для предотвращения попадания птиц в компрессоры двигателей;
- 4. Требуется выполнение численного моделирование с учетом высокой скорости протекания процессов.

Цели работы

- 1. Изучение методов конечно-элементного моделирования динамической задачи контактного взаимодействия птицы и металлической плетеной конструкции;
- 2. Конечно-элементное решение прочностной задачи столкновения птицы с плетеной конструкцией на высокой скорости.

Модельная задача


Решение задачи позволяет определить особенности свойств материала, которые необходимо учесть при численном моделировании.

1. Линейно-упругий изотропный материал:

$$\underline{\varepsilon} = \frac{1}{E} \Big((1 + \nu) \cdot \underline{\sigma} - \nu \cdot 3p\underline{\underline{E}} \Big); E = 2.1 \cdot 10^5 \text{ M}\Pi a; \nu = 0.3.$$

2. Упругопластические свойства. Упрочнение с ростом скорости

деформаций:

3. Критерии разрушения:

для пластичных материалов; по механизму касательных напряжений; MSFLD.

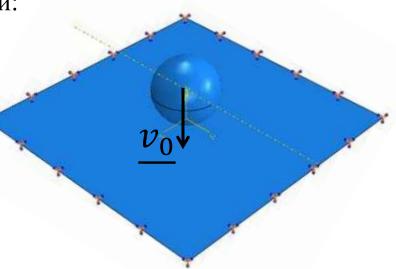
Конечно-элементная постановка

m; r

Конечно-элементная сетка:

100 КЭ типа R3D4;

2500 КЭ типа S4R.


Параметры геометрии и инерционные свойства:

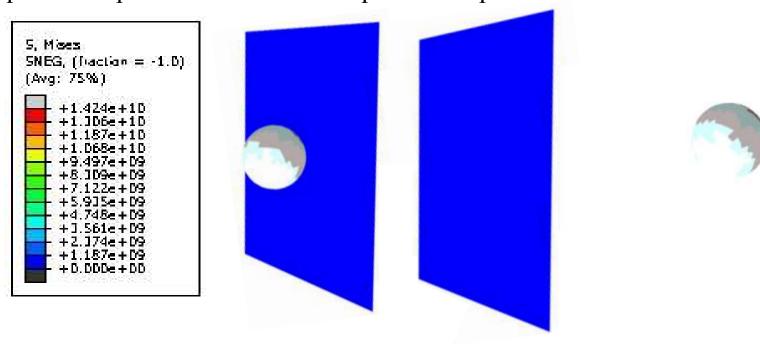
a = 1 м; $h = 1 \cdot 10^{-3}$ м; r = 0.125 м; $\rho = 7800$ кг/м³; m = 5 кг.

$$a$$
 $\rho; E; \nu$

Краевые условия задачи:

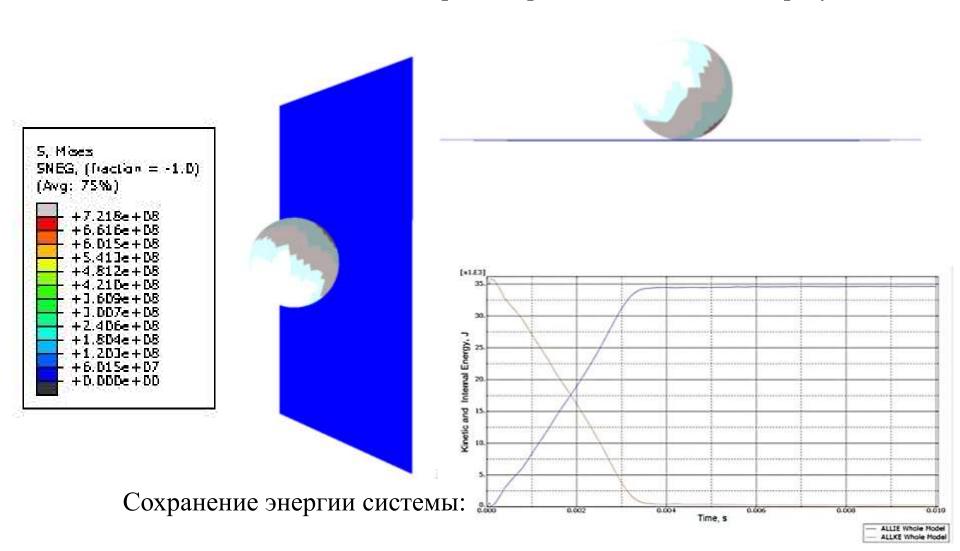
$$v|_{t=0} = v_0 = 120 \text{ m/c};$$

 $\underline{u}|_{\Gamma} = 0; \underline{\varphi}|_{\Gamma} = 0.$

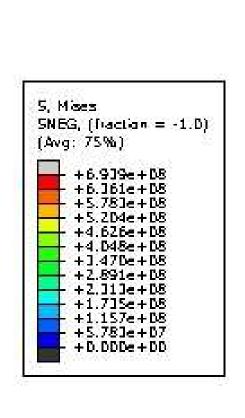


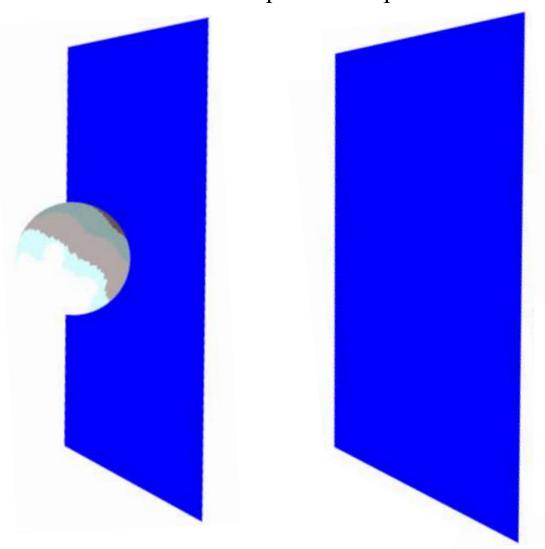
Модель линейно-упругого материала мишени

Приближение линейно-упруго материала дает парадоксально большие напряжения:


Прямая сторона пластины: Обратная сторона:

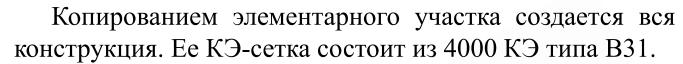
Модель упруго-пластического материала мишени


Учет пластических свойств материала принципиально меняет результат:



Модель упругопластического материала с разрушением

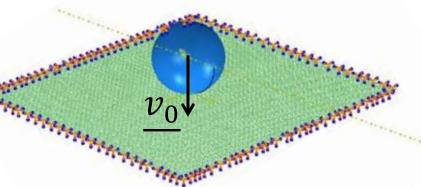
Прямая сторона пластины: Обратная сторона:

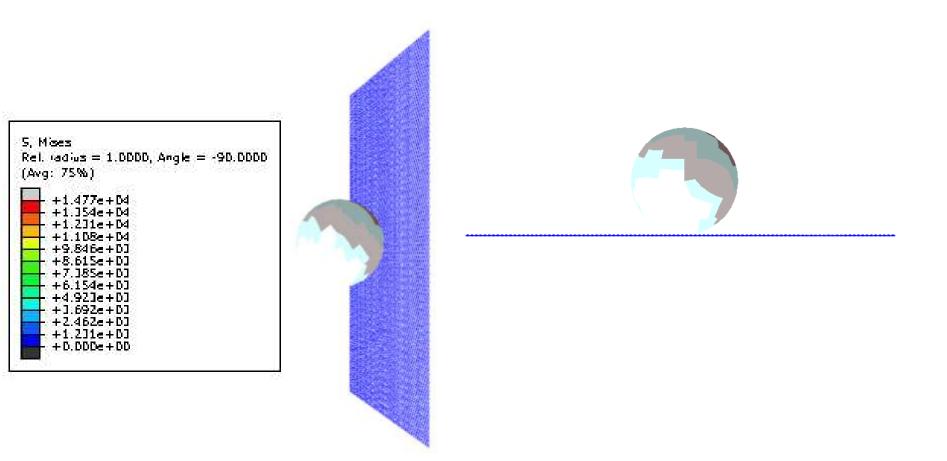

Задача столкновения абсолютно твердого тела с плетеной конструкцией


Построение геометрии плетеной конструкции проводится в среде Beta-Ansa. Изобразим ее элементарный участок:

Параметры прутьев выбираются так, чтобы суммарная масса конструкции не превышала массу рассмотренной пластины:

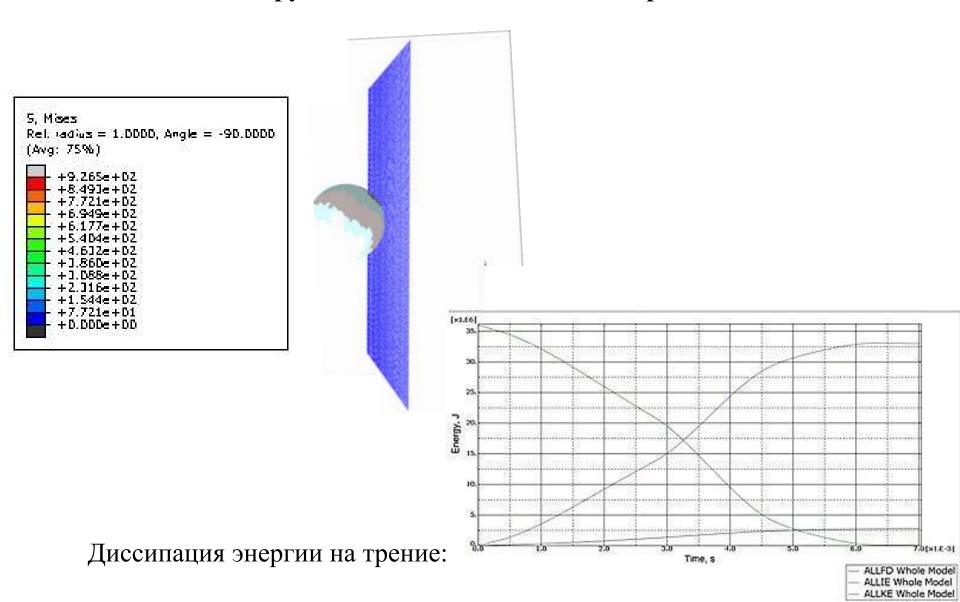
$$R = 1 \cdot 10^{-3} \text{ M}; H = 10 \text{ MM}.$$


R — радиус прутьев, H — расстояние между ними.

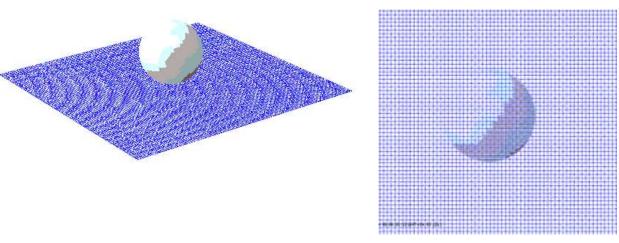

Краевые условия задачи:

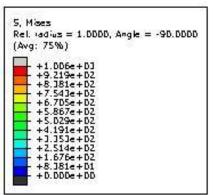
$$v|_{t=0} = v_0 = 120 \text{ m/c};$$

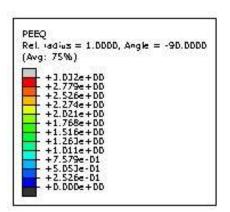
 $\underline{u}|_{\Gamma} = 0; \underline{\varphi}|_{\Gamma} = 0.$



Линейно-упругая модель материала


Упругопластическая модель материала





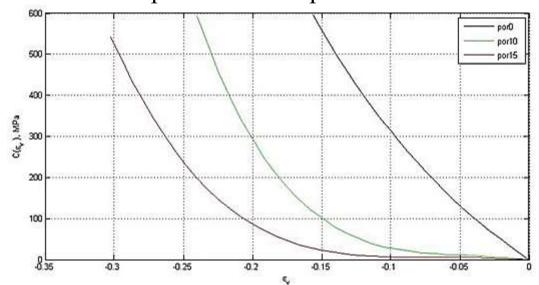
Упругопластическая модель материала, учитывающая возможность разрушения

При проведении эксперимента на разрушаемом материале установлено, что начальной скорости импактора $v_0 = 120 \,\mathrm{m/c}$ недостаточно для его разрушения. С целью исследования разрушения плетеной конструкции начальная скорость импактора увеличена до $v_0 = 200 \,\mathrm{m/c}$:

Результаты серии экспериментов

Результаты проведенных численных экспериментов представлены в таблице:

Задача				Время	Поглощение
		u_{max} ,	q_{max} ,	остановки	кинетической
Материал	Конструкция	M	МПа	импактора	энергии
				T_0 , MC	импактора
линейно-упругий	сплошная пластина	0.090	11334	1.4	26.33 %
линейно-упругий	плетеная сетка	0.158	14670	2.1	27.75 %
упругопластический	сплошная пластина	0.245	764.0	4.0	99.52 %
упругопластический	плетеная сетка	0.458	797.0	6.5	99.65 %



Методика построения птицы. Модель материала

- 1. При высокоскоростных процессах материал птицы ведет себя как однородная жидкость;
- 2. Гидродинамическая модель материала задается в виде уравнения состояния зависимости давления от объемных деформаций:

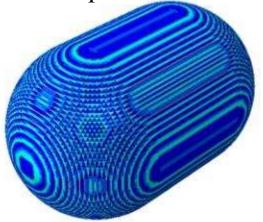
$$p = C(\varepsilon_v)$$
; $\varepsilon_v = ln\left(\frac{\rho_0}{\rho}\right)$; $\rho_0 = 938$ κΓ/M³.

3. На зависимость влияет пористость материала:

Методика построения птицы. Модель материала и геометрия

4. Материал обладает свойством пластически деформироваться и имеет следующие предел текучести и модуль сдвига:

$$σ = 0.1 \, \text{MΠa}; \, G = 10 \, \text{MΠa};$$

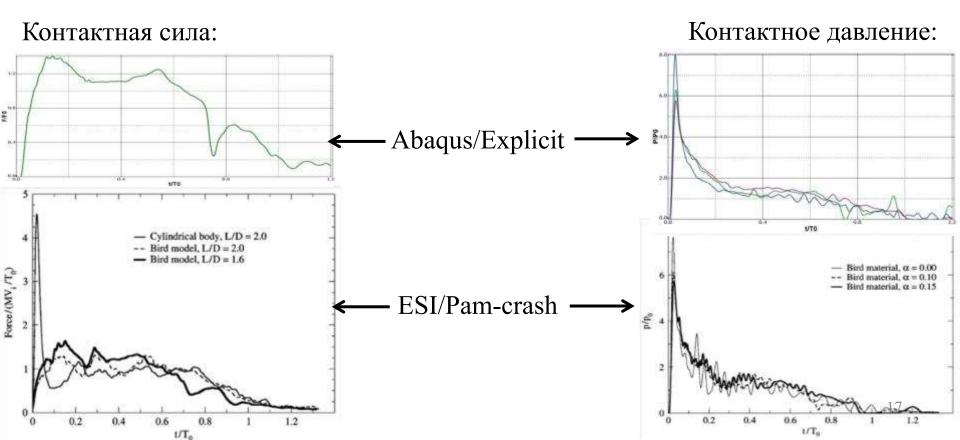

5. Для адекватного моделирования течения материала, необходимо указать гидростатическое напряжение отсечки, выше которого материал разрушается:

$$p^* = 2.75 \text{ M}\Pi a;$$

6. Геометрические размеры птицы массы 1.8 кг приведены ниже:

$$L = 200 \text{ мм} - \text{длина птицы;}$$

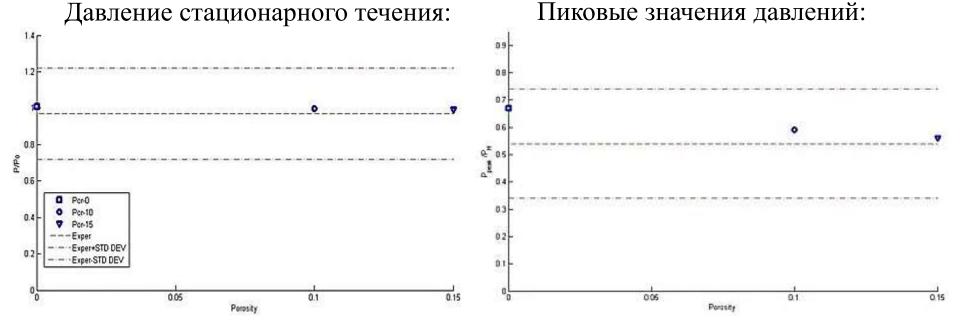
$$D = 125 \, \text{мм} - \text{ее}$$
 диаметр.


Связный метод Эйлера-Лагранжа (CEL)

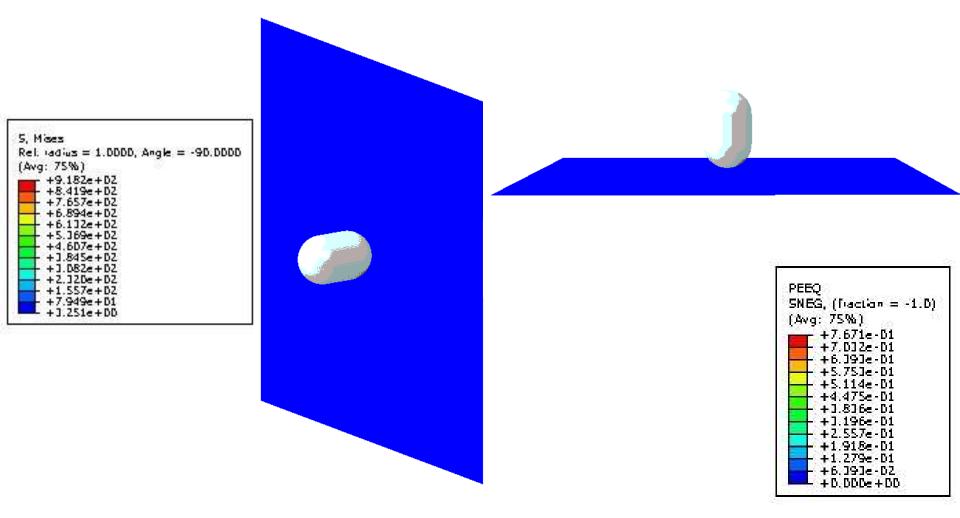
- 1. Решение задачи течения жидкости может быть получено методом конечных элементов с большей точностью в постановке Эйлера;
- 2. Узлы эйлеровой КЭ сетки не привязаны к геометрии движущегося тела, что не деформирует конечные элементы;
- 3. Для решения задач контактного взаимодействия между твердыми телами и жидкостями применяется, так называемый, связный метод Эйлера-Лагранжа;
- 4. Метод предполагает сочетание в конечно-элементной модели элементов сетки Эйлера и классических КЭ лагранжевой механики;
- 5. Взаимодействие не может быть реализовано при контакте поверхности КЭ эйлеровой сетки с балочными элементами.

Верификация модели материала птицы

Проведено сравнение результатов численного моделирования столкновения построенной птицы с абсолютно твердой мишенью с экспериментальными данными, а также с результатами численного эксперимента, полученного при помощи пакета ESI/Pam-crash:

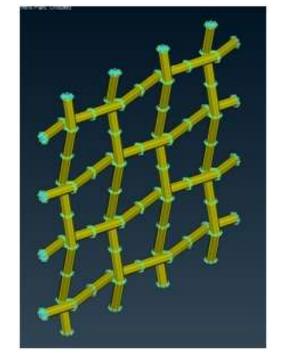


Сравнение результатов с экспериментом


Для сравнительного анализа с экспериментальными данными о столкновении птицы с абсолютно твердой мишенью взяты средние статистические значения пиковых нормированных давлений, а также давлений в фазе стационарного течения. Результаты, полученные численно, попадают в зону стандартного среднеквадратического отклонения.

$$P_0 = \frac{1}{2}\rho_0 v_0^2$$
; $P_H = \rho_0 (c_0 + 2v_0)v_0$.

Столкновение птицы с упругопластической с разрушением пластиной

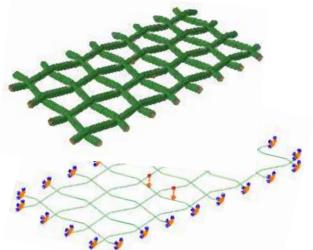


Методика построения плетеной конструкци

Поскольку средствами вычислительного пакта Abaqus не предоставляется возможности реализовать контактное взаимодействие между моделью птицы и плетеной конструкцией, КЭ модель которой основана на балочных элементах, необходимо окружить каждый стержень, входящий в состав конструкции, оболочкой.

Данное построение выполнено в среде Beta-Ansa. Ниже изобразим элементарный участок плетеной конструкций, способной контактировать с

эйлеровыми конечными элементами:



Верификация конструкции

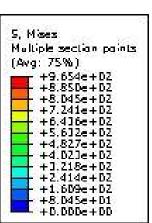
Добавление оболочек не должно сказываться на жесткостных и инерционных свойствах плетеной конструкции.

После завершения процедуры построения окружающих балки оболочек, проведено сравнение решений задач изгиба участков плетеных конструкций

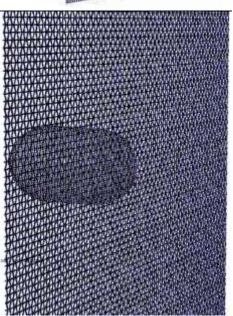
с добавлением оболочек и без:

У			
			Access to the second se
2 0.4	0.6	0.8	1.0{×1.0

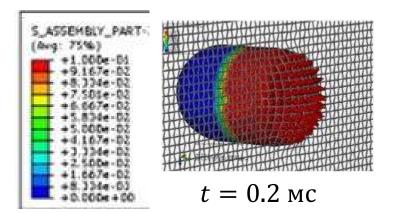
КЭ постановка	<i>f</i> ,Гц	u_{∞} , 10^{-3} м
Оболочечные и балочные КЭ	8403	4.5775
Балочные КЭ	8368	4.5805
Относительные различия	0.4 %	0.06 %

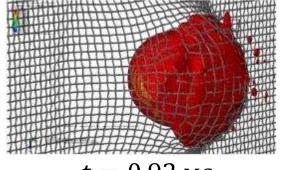

Сравнение установившегося прогиба и частоты колебаний.




Конечно-элементное решение задачи столкновения птицы с плетеной конструкцией

Краевые условия:





Напряжения в импакторе:

$$t = 0.92 \text{ MC}$$

Выводы

- 1. Установлено, что при моделировании высокоскоростных контактных взаимодействий для получения достоверного результата необходимо учитывать нелинейные физические свойства материалов контактирующих тел, такие как пластичность и разрушение;
- 2. Изучена методика построения конечно-элементных моделей жидких тел в постановке задачи механики Эйлера на примере птицы;
- 3. Изучена методика построения плетеной конструкции, способной контактировать с эйлеровыми конечными элементами;
- 4. Исследование процессов деформирования и напряженного состояния плетеной металлической конструкции подтвердило возможность ее использования в целях защиты от столкновения с массивными телами на высокой скорости.