

Конечно-элементное моделирование и исследование процесса роста трещин методом XFEM

Выполнил студент гр. 4053/1

Руководитель, к.т.н., профессор

Соруководитель, асс.

А.С. Мельников А.И. Боровков

И.Б. Войнов

Санкт-Петербург 2013

Введение

Рассматриваются задачи:

- 1. Статичная трещина в бесконечной пластине под действием растягивающих усилий
- 2. Рост трещины в пластинах из различных материалов с разной геометрией и граничными условиями
- 3. Рост двух трещин в одной пластине

4. Рост трещины в трехмерной конструкции с реальной геометрией

Метод конечных элементов в задаче о трещине

Основные особенности стандартного МКЭ в задаче о трещине:

• Вводятся специальные сингулярные элементы у конца трещины

 Перестраивается КЭ сетка на каждом шаге процесса роста трещины
Выполняется критерий начала разрушения – находится угол поворота направления роста трещины относительно старого направления – длина трещины увеличивается на фиксированную длину – сетка перестраивается

Недостатки:

- Большая трудоемкость процесса
- Сложности при моделировании трещин для нетривиальных моделей
- Жесткая привязка геометрии трещины к исследуемой модели и КЭ сетке

Метод ХГЕМ

Основные особенности метода:

• Вводятся обогащенные функции для узлов около трещины

Аппроксимация вектора перемещений: $\boldsymbol{u} = \sum_{i=1}^{N} N_i(x) \left| \boldsymbol{u}_i + H(x) \boldsymbol{a}_i + \sum_{\alpha=1}^{N} F_{\alpha}(x) \boldsymbol{b}_i^{\alpha} \right|$

$$H(x) = \begin{cases} 1, \text{при } (x - x^*) \mathbf{n} \ge 0\\ -1, \text{при } (x - x^*) \mathbf{n} < 0 \end{cases} - \phi y \text{нкция скачка} \\ F_{\alpha}(x) = \left[\sqrt{r} \sin \frac{\theta}{2}, \sqrt{r} \cos \frac{\theta}{2}, \sqrt{r} \sin \theta \sin \frac{\theta}{2}, \sqrt{r} \sin \theta \cos \frac{\theta}{2} \right] - \end{cases}$$

ассимптотическая функция для вершины трещины (используется только для статичной трещины)

 Для определения геометрии трещины используется метод установленного уровня

Положение трещины определяются двумя ортогональными знаковыми функциями расстояния φ , ψ

Метод ХГЕМ

Основные особенности метода:

• Используются узлы-фантомы для помощи в интерполяции разделенных элементов

• При росте трещины не используется асимптотическая функция для вершины трещины и трещина проходит один элемент за шаг

Задача о статичной трещине. Горизонтальная трещина

Условие задачи:

2*l* = 0.02 м 2I = 0.2M

$$q = 10$$
 Мпа

 $E = 120 \cdot 10^9 \, \text{Ia}$

 $\nu = 0.25$

Коэффициенты интенсивности напряжений:

$$K_{I} = \lim_{r \to 0} \sqrt{2\pi r} \,\sigma_{y}(r,0) = C\left(\frac{l}{L}\right) q \sin^{2} \alpha \sqrt{\pi l};$$
$$K_{II} = \lim_{r \to 0} \sqrt{2\pi r} \,\tau_{xy}(r,0) = C\left(\frac{l}{L}\right) q \sin\alpha \cos\alpha \sqrt{\pi l}$$

Поправка для конечной пластины:

$$C\left(\frac{l}{L}\right) = 1 + 0.043\left(\frac{l}{L}\right) + 0.491\left(\frac{l}{L}\right)^{2} + 7.125\left(\frac{l}{L}\right)^{3} - 28.403\left(\frac{l}{L}\right)^{4} + 59.583\left(\frac{l}{L}\right)^{5} - 65.278\left(\frac{l}{L}\right)^{6} + 29.762\left(\frac{l}{L}\right)^{7}$$

Напряжения и перемещения:
Система координат у

Напряжения и перемещения:

$$\sigma_{y} = \frac{K_{I}}{\sqrt{2\pi r}} \cos\frac{\theta}{2} \left(1 + \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right) + \frac{K_{II}}{\sqrt{2\pi r}} \cos\frac{\theta}{2}\sin\frac{\theta}{2}\cos\frac{3\theta}{2}$$
$$\tau_{xy} = \frac{K_{I}}{\sqrt{2\pi r}} \cos\frac{\theta}{2}\sin\frac{\theta}{2}\cos\frac{3\theta}{2} + \frac{K_{II}}{\sqrt{2\pi r}}\cos\frac{\theta}{2} \left(1 - \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right)$$
$$u_{y} = \frac{K_{I}}{\mu} \sqrt{\frac{r}{2\pi}}\sin\frac{\theta}{2} \left(1 - 2\nu + \sin^{2}\frac{\theta}{2}\right) + \frac{K_{II}}{\mu} \sqrt{\frac{r}{2\pi}}\cos\frac{\theta}{2} \left(2\nu - 1 + \sin^{2}\frac{\theta}{2}\right)$$

вершины трещины:

7

Задача о статичной трещине. Горизонтальная трещина

Зависимость относительной погрешности (выраженной в процентах) между аналитическим и численным решениями от количества узлов КЭ модели:

Задача о статичной трещине. Горизонтальная трещина

Распределение напряжений у вершины трещины при $\theta = 0$:

r – расстояние от вершины трещины Аналитическое решение: $\sigma_y = \frac{K_I}{\sqrt{2\pi r}}$ Система координат у

вершины трещины:

Перемещения верхней поверхности трещины при $\theta = \pi$:

Аналитическое решение: $u_y = \frac{\kappa_I}{\mu} \sqrt{\frac{r}{2\pi}} 2(1-\nu)$

Задача о статичной трещине. Трещина под углом к направлению растягивающих усилий.

Постановка задачи (все условия остались прежними):

Зависимость коэффициента интенсивности *K_I* от угла α между трещиной и направлением растягивающих усилий:

Зависимость коэффициента интенсивности *K_{II}* от угла *α* между трещиной и направлением растягивающих усилий:

Геометрия пластины взята из: Miranda A.C.O. et al. Fatigue Crack Propagation under Complex Loading in Arbitrary 2D Geometries. Applications of Automation Technology in Fatigue and Fracture Testing and Analysis - V. 4. West Conshohocken, PA, 2002

Зависимость траектории роста трещины от количества узлов в модели:

NN1	NN2	NN3
3232	10015	25446

Траектории роста трещины, полученные: Методом XFEM: Из эксперимента*:

*Значения взяты из: Боровков А.И., Пальмов В.А., Михайлов А.А., Михалюк Д.С., Шевченко Д.В. Approaches to Crack Trajectories Prediction in Composite Materials. Finite Element Crack Propagation Analysis (1) – Презентация, 2004 г.

Сравнение траекторий роста трещины, полученных XFEM и МКЭ*:

1887

 $E = 205 \cdot 10^{6}$ Па $\nu = 0.3$ P = 1000 Н a = 30 мм b = 20 мм $\sigma_{max} = 100 \cdot 10^{3}$ Па

КЭ модель:

NN (число узлов)

Геометрия пластины взята из: Galvez J., Elices M., Guinea G.V., Planas J. Crack trajectories under mixed mode and non-proportional loading - Int. J. Fract. 81 (1996) 171-193

Зависимость траектории роста трещины от количества узлов в модели:

NN1	NN2	NN3
1315	1807	4006

Траектория роста трещины, полученная методом XFEM:

Сравнение траекторий роста трещины, полученных XFEM, МКЭ* и средними экспериментальными значениями**:

Сравнение траекторий роста трещины, полученных XFEM и экспериментальными значениями**:

*Значения полученные МКЭ взяты из: Боровков А.И., Пальмов В.А., Михайлов А.А., Михалюк Д.С., Шевченко Д.В. Approaches to Crack Trajectories Prediction in Composite Materials. Finite Element Crack Propagation Analysis (1) – Презентация, 2004 г.

**Значения полученные экспериментально взяты из: Galvez J., Elices M., Guinea G.V., Planas J. Crack trajectories under mixed mode and non-proportional loading - Int. J. Fract. 81 (1996) 171-193

 $E = 2 \cdot 10^9$ Па $\nu = 0.3$ $\sigma = 1000$ Па $\sigma_{max} = 10 \cdot 10^3$ Па

Геометрия пластины взята из: Боровков А.И., Пальмов В.А., Михайлов А.А., Михалюк Д.С., Шевченко Д.В. Approaches to Crack Trajectories Prediction in Composite Materials. Finite Element Crack Propagation Analysis (1) – Презентация, 2004 г.

*Значения полученные МКЭ взяты из: Боровков А.И., Пальмов В.А., Михайлов А.А., Михалюк Д.С., Шевченко Д.В. Approaches to Crack Trajectories Prediction in Composite Materials. Finite Element Crack Propagation Analysis (1) – Презентация, 2004 г.

Задача о росте трещин. Две трещины в одной пластине на одной стороне.

NE (число элементов)	8911
NN (число узлов)	9112

*Значения, полученные МКЭ взяты из: Сорин М.А., Боровков А.И., Шевченко Д.В. Конечно-элементное исследование задач механики хрупкого разрушения – Выпускная работа бакадавра, 2004 г.

Задача о росте трещин. Две трещины в одной пластине на одной стороне.

Сравним траектории роста трещин, полученные XFEM и МКЭ* для первой трещины, при зафиксированной второй трещине на $y_2 = -0.01$ м:

*Значения, полученные МКЭ взяты из: Сорин М.А., Боровков А.И., Шевченко Д.В. Конечно-элементное исследование задач механики хрупкого разрушения – Выпускная работа бакалавра, 2004 г.

Задача о росте трещин. Две трещины в одной пластине на одной стороне.

При $y_2 = -0.01$ м и $y_1 = 0$ м:

*Значения, полученные МКЭ взяты из: Сорин М.А., Боровков А.И., Шевченко Д.В. Конечно-элементное исследование задач механики хрупкого разрушения – Выпускная работа бакалавра, 2004 г.

Задача о росте трещин. Две трещины в одной пластине на разных сторонах.

Сравним траектории роста трещин, полученные XFEM и МКЭ* для второй трещины при зафиксированной первой трещине на *y*₁ = 0 м:

$$y_2 = -0.05$$
 M: $y_2 = 0.05$ M:

*Значения, полученные МКЭ взяты из: Сорин М.А., Боровков А.И., Шевченко Д.В. Конечно-элементное исследование задач механики хрупкого разрушения – Выпускная работа бакалавра, 2004 г.

Задача о росте трещин. Две трещины в одной пластине на

разных сторонах.

При $y_1 = 0$ м и $y_2 = -0.01$ м :

Задача о росте трещин. Трещина в реальной пространственной конструкции

Краевая продольная трещина в части фюзеляжа:

 $E = 73.1 \cdot 10^9$ Па $\nu = 0.33$

Внутреннее давление: $P = 30 \cdot 10^3$ Па

 σ_{max} = 200 \cdot 10⁶ Па

Все боковые грани, кроме той, через которую проходит трещина, зафиксированы

КЭ модель:

NE (число элементов)	52727
NN (число узлов)	91038

Задача о росте трещин. Трещина в реальной пространственной

конструкции

Траектория роста трещины, полученная методом XFEM:

Задача о росте трещин. Трещина в реальной пространственной конструкции

Центральная продольная трещина в части фюзеляжа:

 $E = 73.1 \cdot 10^9$ Па $\nu = 0.33$

Внутреннее давление: $P = 40 \cdot 10^3$ Па

 σ_{max} = 200 \cdot 10⁶ Па

Все боковые грани зафиксированы

КЭ модель:

NE (число элементов)	52727
NN (число узлов)	91038

Задача о росте трещин. Трещина в реальной пространственной

конструкции

Траектория роста трещины, полученная методом XFEM:

Заключение

Метод ХГЕМ

Достоинства:

- Нет необходимости в специальных элементах и т.п.
- Независимость построения трещины от КЭ сетки
- Независимость построения геометрии трещины от тела
- Быстродействие

Недостатки:

- Решение статичных трещин
- Ограничения на использование элементов (используются только линейные элементы)

На основе проведенных исследований данный метод рекомендуется для использования при расчете траекторий распространения трещин в плоских и трехмерных телах