

## ДИССЕРТАЦИЯ на соискание академической степени МАГИСТРА

Тема: Исследование прочности и долговечности конструкции авиационного датчика вибраций MB-38

Выполнил: Балобанов В.В., 6055/11 Руководитель: проф. Боровков А.И. Соруководитель: асс. Клявин О.И.



#### Оглавление.

- 1. Описание проблемы. Модель датчика вибрации МВ-38.
- 2. Описание и результаты вычислительного эксперимента.
- 3. Определение собственных частот и форм колебаний датчика.
- 4. Определение пластической зоны перед вершиной трещины.
- 5. Определение долговечности датчика МВ-38.





#### Датчик вибраций MB-38



Датчик вибрации МВ-38 – компрессионный пьезоакселерометр с цилиндрическими пьезоэлементами из керамики Синоксаль-49

<u>Технические характеристики:</u> Диапазон контролируемых частот: 10 – 3000 Гц Диапазон измерения: 0.1 – 200*g* Диапазон рабочих температур: –60 – 250°С





#### Датчик вибраций MB-38



Задача датчика: Выделение вибраций малого уровня (до 10*g*) из широкополосного процесса вибраций.

Частоты вибраций в двигателях – до 12000 Гц. Рабочая температура на поверхности – до 400°С.

Турбореактивный двигатель АИ-222-25





#### САД-модель





Кафедра «Механика и процессы управления» СотрМесьLab

#### Конечно-элементная модель





#### Моделирование провода



Моделирование с помощью оболочечных элементов, через равные промежутки соединяемых жесткими связями с жилами, моделируемыми балочными элементами

Моделирование твердотельными элементами, некоторые из которых имеют общие узлы с балочными элементами жил





- ВЗ1 (количество: 1011) двухузловые балочные элементы
- S4R и S3R (количество: 1262 и 52 соотв.) оболочечные четырех- и трехузловые элементы с пониженным интегрированием
- C3D8R (количество: 48098) твердотельные гексагональные восьмиузловые элементы с пониженным интегрированием
- C3B6 (количество: 7448) твердотельные шестиузловые элементы в форме треугольных призм
- С3D4 (количество: 28948) твердотельные тетраэдрические четырехузловые элементы
- SFM3D4R и SFM3D3 (количество: 1201) мембранные четырех- и трехузловые элементы

Связи:

**МРС** (количество: 15) – многоточечные жесткие связи **TIE-contact** (количество: 6) – связанные контакты

<u>Всего:</u>

88020 элементов, 76475 узлов, 233049 степеней свободы

Кафедра

CompMec

«Механика и процессы управления»



Кафедра «Механика и процессы управления» СомрМесьLab

#### Материалы

| Деталь                | Материал                                   | Е, ГПа | v     | ρ, <sup>κτ</sup> / <sub>м</sub> ³ |
|-----------------------|--------------------------------------------|--------|-------|-----------------------------------|
| Основание,<br>Хомут   | 10Х18Н11БЛ                                 | 194    | 0.28  | 7900                              |
| Втулка                | 12X18H9T                                   | 180    | 0.28  | 7900                              |
| Штыри, Шток           | 36НХТЮ                                     | 130    | 0.28  | 7900                              |
| Изоляция              | Стекло                                     | 70     | 0.23  | 2500                              |
| Гайка                 | BT1-0                                      | 112    | 0.32  | 4505                              |
| Планка, Крышка        | 12X18H10T                                  | 198    | 0.28  | 7900                              |
| Провод                | Из опыта                                   | 0.46   | 0.363 | 1370                              |
| Жилы                  | Из опыта                                   | 0.46   | 0.28  | 7900                              |
| Кер. шайбы            | Керамика<br>Al <sub>2</sub> O <sub>3</sub> | 276    | 0.22  | 3600                              |
| Наполнитель<br>обоймы | Резина                                     | 0.0075 | 0.45  | 1500                              |



#### Определение модуля Юнга провода

Эксперимент: Провод 
$$\rightarrow$$
 балка круглого сечения  
Вес груза:  $P = 0.2$  H  
Момент инерции  $I = \frac{\pi d^4}{64} = 16.773$  мм<sup>4</sup>  
Длина балки  $L = 120$  мм  
Измеренный прогиб:  $u_z = 15$  мм  $\Rightarrow$  = 460 МПа

# $u_z = 14.95 \text{ MM}$

#### Конечно – элементная постановка



#### Граничные условия





Перемещения  $U_z$  подобраны так, чтобы амплитуда ускорений равнялась  $A_z = 200g$ 

Пример: для частоты f = 5000 Гц U = 0.002 мм







примерно после 0,03 секунды (150 циклов)



#### Колебания датчика в установившемся режиме



# Поле перемещений $u_z$ относительно нижней грани основания (Масштаб 100:1)



## Максимальные напряжения, наблюдаемые в установившемся режиме



# Максимальные эквивалентные по Мизесу напряжения возникают в нижней части сварного шва



#### Сварное соединение между втулкой и основанием



Технология соединения двух деталей с помощью аргонно-дуговой сварки не позволяет создать сварной шов на всей поверхности соприкосновения двух соединяемых деталей. В результате часть соприкасаемых поверхностей превращается в сварной шов, а часть остается свободной, образуя так называемый «непровар».





#### Исследование сходимости



Исследуется сходимость по количеству элементов по глубине сварного шва. В точке, показанной на рисунке синим цветом, определяются эквивалентные по Мизесу напряжения.



#### Исследование сходимости



Исследование сходимости: решение ряда статических задач с разными конечно-элементными сетками.



сходимость по числу элементов вдоль сварного шва. Выбрана сетка с шестью элементами.



#### Определение собственных частот

#### Алгоритм Ланцоша



![](_page_18_Picture_0.jpeg)

#### Амплитудно-частотная характеристика

![](_page_18_Figure_4.jpeg)

Пик напряжений соответствует частоте 6500 Гц

![](_page_19_Picture_0.jpeg)

#### Определение зоны пластичности (модельная задача)

Плоское деформированное состояние:

$$r_p = \frac{{K_I}^2}{2\pi {\sigma_T}^2} (1 - 2\nu)^2$$

Формула Ирвина для определения зоны пластичности вдоль трещины

*K*<sub>*I*</sub> – коэффициент интенсивности напряжений первого типа *К*<sub>*I*</sub> определяется двумя способами:

- Аналитическим, с использованием справочных формул  $K_I = 833.69 \text{ МПа} \cdot \sqrt{\text{мм}}$
- Конечно-элементным, с использованием метода аппроксимации и экстраполяции на вершину трещины  $K_I = 848.31 \text{ M} \Pi a \cdot \sqrt{\text{M} M}$

![](_page_20_Figure_3.jpeg)

Определение длины зоны пластичности с помощью графика:

$$\sigma_{eff} = \sigma_T \chi$$

*χ* – коэффициент стеснения пластической деформации:

$$\chi = \frac{1}{1-2\nu} = 2.5$$

| Метод                      | <i>т<sub>р</sub>,</i> мм | Отличие от аналитического |
|----------------------------|--------------------------|---------------------------|
|                            |                          |                           |
| Аналитический метод        | 0.38                     | -                         |
| Графический метод          | 0.37                     | 0.03                      |
| Метод с аппроксимацией     | 0.39                     | 0.03                      |
| коэффициента интенсивности |                          |                           |

![](_page_21_Picture_0.jpeg)

#### Определение зоны пластичности, возникающей в сварном шве

![](_page_21_Figure_4.jpeg)

Коэффициент интенсивности  $K_I = \sigma_x \sqrt{2\pi r}$ 

Длина пластической зоны за вершиной трещины вдоль ее оси  $r_p = 0.021$  мм

Длина зоны пластичности меньше размеров одного элемента (0.083 мм), следовательно пластические деформации локализованы около вершины трещины и использование линейной упругой теории допустимо.

![](_page_22_Picture_0.jpeg)

#### Оценка ресурса работы датчика по кривой усталости

![](_page_22_Figure_4.jpeg)

![](_page_22_Picture_5.jpeg)

Эквивалентные по Мизесу напряжения  $\sigma = 175.6$  МПа

Число циклов работы датчика до разрушения ~ 2000, время работы – около 0.3 секунды

![](_page_23_Picture_0.jpeg)

#### Принятие мер по уменьшению уровня напряжений

Для уменьшения напряжений необходимо снизить колебательные перемещения провода и гайки относительно основания датчика, не внося изменений в конструкцию. Для этих целей была использована обойма, представляющая собой стальной хомут с резиновым наполнителем, который одевается на гайку.

Хомут своей нижней частью крепится на ту же поверхность, что и основание датчика. В КЭ постановке на узлы нижней части хомута накладываются те же граничные условия, что и на нижнюю грань основания

![](_page_23_Figure_6.jpeg)

![](_page_24_Picture_0.jpeg)

#### Сравнение модели датчика с обоймой и без неё

Поле перемещений  $u_z$  относительно нижней грани основания (Масштаб 50:1):

![](_page_24_Figure_5.jpeg)

| Напряжения в сварном шве               |                                                                 |  |  |  |
|----------------------------------------|-----------------------------------------------------------------|--|--|--|
| 175.6 МПа                              | 7.6 МПа                                                         |  |  |  |
| Время работы согласно кривой усталости |                                                                 |  |  |  |
| менее 1с                               | Значение лежит ниже кривой усталости ⇒ разрушения не произойдет |  |  |  |

![](_page_25_Picture_0.jpeg)

#### Оценка ресурса работы датчика по Пэрису

Формула Пэриса для скорости роста трещины:  $v = \frac{dl}{dN} = C(\Delta K)^m$  $\Delta K = K_{I_{max}} - K_{I_{min}}$  – размах коэффициента интенсивности в цикле

Значения коэффициентов:

$$m = 3$$
  
 $C = 5.21 \cdot 10^{-13} \left(\frac{E_{rt}}{E_{et}}\right)^3 =$   
 $= 6.52 \cdot 10^{-13}$   
 $\Delta K_{th} = 63 \text{ M}\Pi a \cdot \sqrt{\text{MM}}$   
 $\Delta K_{cr} = 1154 \text{ M}\Pi a \cdot \sqrt{\text{MM}}$ 

![](_page_25_Figure_7.jpeg)

![](_page_26_Picture_0.jpeg)

#### Оценка ресурса работы датчика по Пэрису

|                                                                                                                                                      | Модель датчика<br>без обоймы | Модель датчика с обоймой |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|
| Размах коэффициента интенсивности $\Delta K_I$ , МПа · $\sqrt{MM}$                                                                                   | 396.31                       | 17.62                    |
| Отношение к пороговому размаху<br>коэффициента интенсивности<br>$\Delta K_I / \Delta K_{th}$ $\Delta K_{th} = 63 \text{ МПа} \cdot \sqrt{\text{мм}}$ | 6.29                         | 0.28                     |

![](_page_26_Figure_5.jpeg)

- Размах коэффициента интенсивности для модели датчика без обоймы
- Размах коэффициента интенсивности для модели датчика с обоймой

![](_page_27_Picture_0.jpeg)

#### Итоги

• В ходе проведения работы была создана подробная конечно-элементная модель датчика вибраций МВ-38.

- Поставлен и решен ряд динамических вибрационных и статических задач.
- Проведено определение собственных частот и амплитудно-частотной характеристики, выявлена наиболее опасная резонансная частота.
- Определены размеры зоны пластичности в окрестности сингулярной точки, доказана возможность применимости упругих свойств материалов без учета пластических, а так же линейной механики разрушений.
- Проведена оценка ресурса работы датчика вибраций двумя способами.
- Предложены эффективные меры по снижению напряжений, возникающих в сварном шве, не вносящие изменений в конструкцию серийно выпускаемого устройства.

![](_page_28_Picture_0.jpeg)

### Спасибо за внимание!