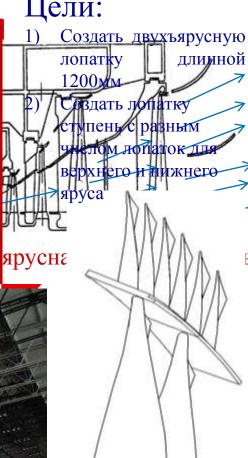
Диссертация на соискание учёной степени магистра по направлению 151600 «Прикладная механика»


Конечно-элементное моделирование и исследование "вильчатой" турбинной лопатки предпоследней ступени для двухъярусного цилиндра низкого давления с выхлопом Баумана

Выполнил студент гр. 6055/12 Руководитель, к.т.н., проф. Соруководитель, асс.:

В.В. Ильин А.И. Боровков В.С. Модестов

Структура работы

Создание модели

- Выбор формы профиля лопатки для нижнего и верхнего яруса
- Количество лопаток на верхнем ярусе
- Выбор оптимальной формы перегородки между ярусами
- Оптимизация взаимного расположения компонентов

Solidworks Autocad

Выбор материала

Первичный анализ модели

- Структурный анализ
- Модальный анализ

Проверка:

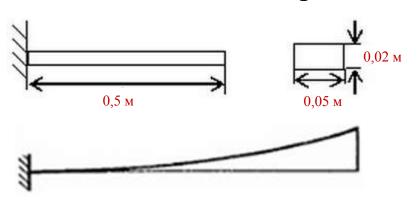
- Быстроходная турбина
- 3000 RPM
- Маленький диаметр вала
- 2. Тихоходная турбина
- 1500 RPM
- Большой диаметр вала

Ansys Workbench Abaqus

Детальный анализ модели

Кафедра

Давление потока влажного пара

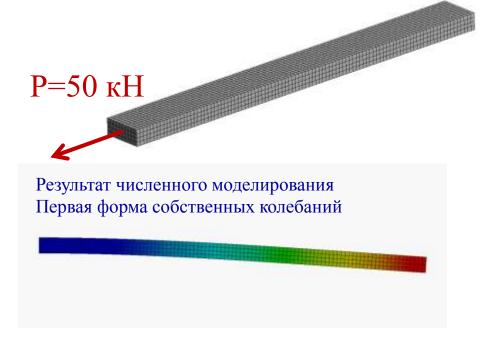

Проверка:

Добавление в структурный анализ о поля давления потока на поверхность рабочих лопаток

Ansys CFX Fluent

Институт прикладной математики и механики

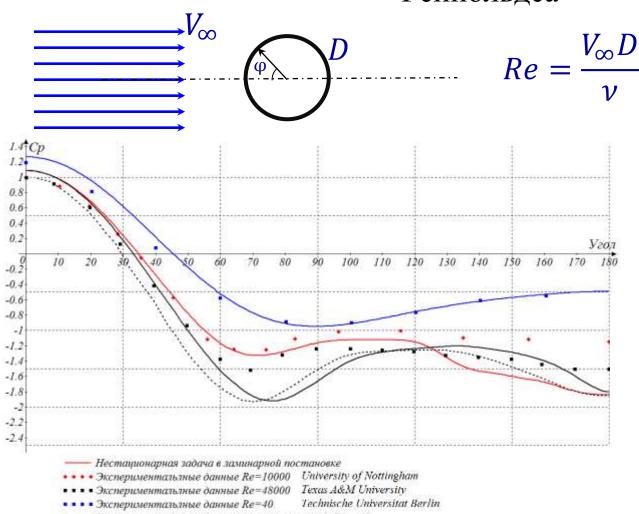
Задача нахождения собственных форм и частот предварительно растянутого стержня под действием растягивающего усилия

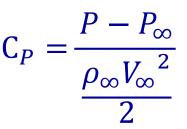


Первая свободная частота стержня без растягивающего усилия:

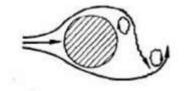
$$f_1 = \frac{1}{2\pi} \left(\frac{k_1}{L}\right)^2 \sqrt{\frac{EJ}{\rho F}} = 67$$

Первая свободная частота стержня без растягивающего усилия:


$$f_1^* = f_1 \sqrt{1 + \frac{5PL^2}{14EJ}} = 85,804$$



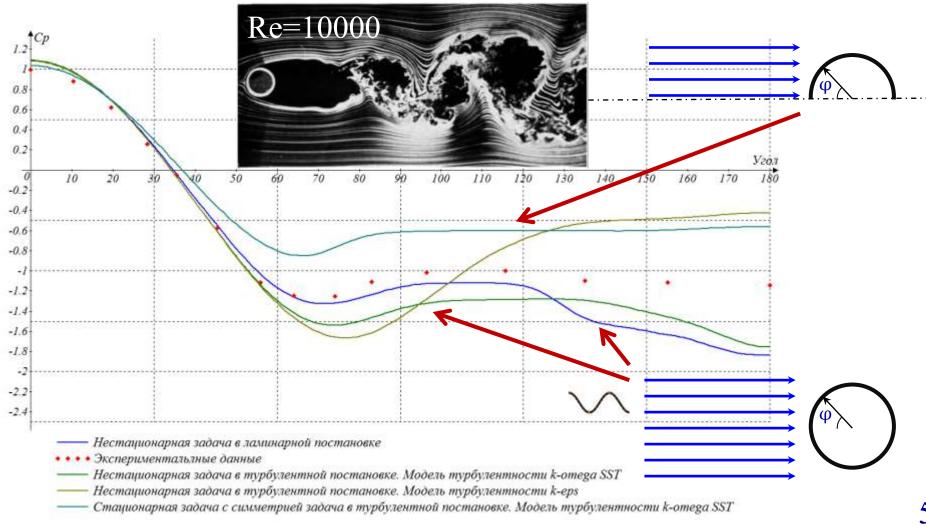
	Численное решение	Аналитическое решение	$\delta = 100\%* f_{14} - f_{1a} / f_{1a} $
Балка без усилия	67,033	67	0,05%
Балка с усилием	85,839	85.804	0,04%


Институт прикладной математики и механики

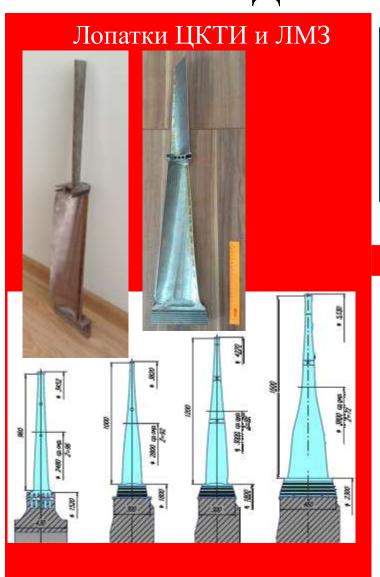
Задача обтекания потоком вязкой несжимаемой жидкости цилиндра бесконечной длины. Результаты для разных чисел Рейнольдса

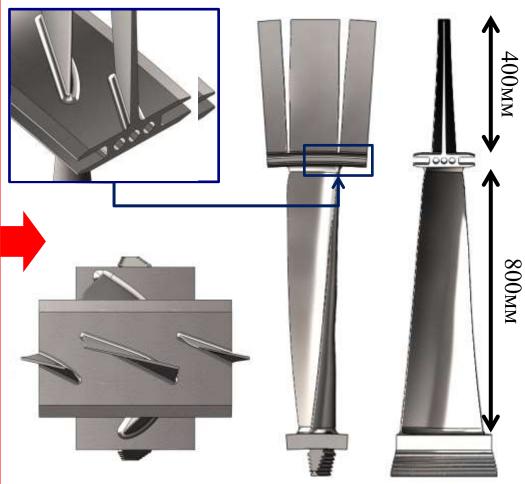
300 ₽₽≤40300000

Стационарная задача в ламинарной постановке Re = 40


Нестационарная задача в турбузентной постановке Re = 48 000 (k-omega SST)

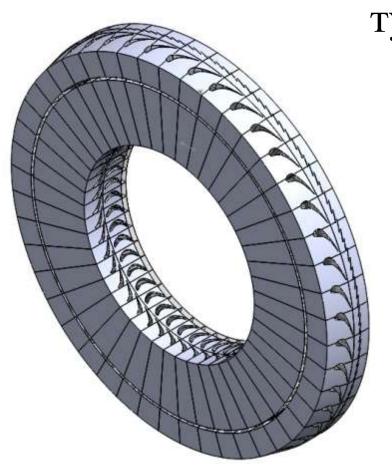
····· Результаты моделирования Берлинского Технического университета Re = 48 000 Technische Universitat Berlin



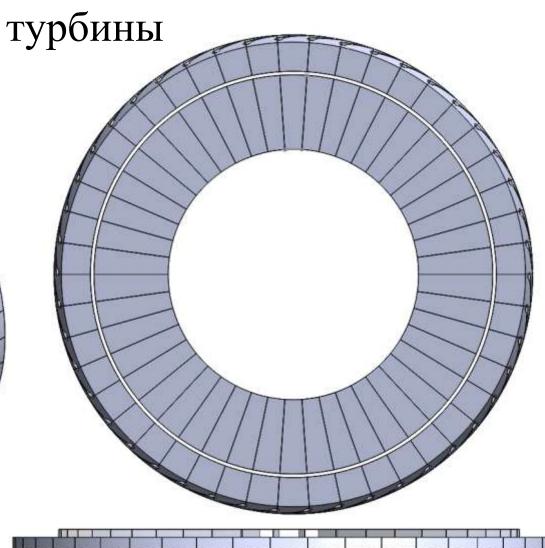


Задача обтекания потоком вязкой несжимаемой жидкости цилиндра бесконечной длины. Результаты для разных постановок задачи

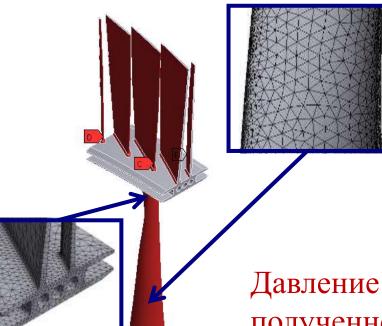
Создание рабочей лопатки



- Верхний ярус создавался на основе верха рабочей лопатки 1200 последней ступени пр-ва ЛМЗ
 - Нижний ярус на основе экспериментальной лопатки тихоходной турбины 1972г. пр-ва ЦКТИ

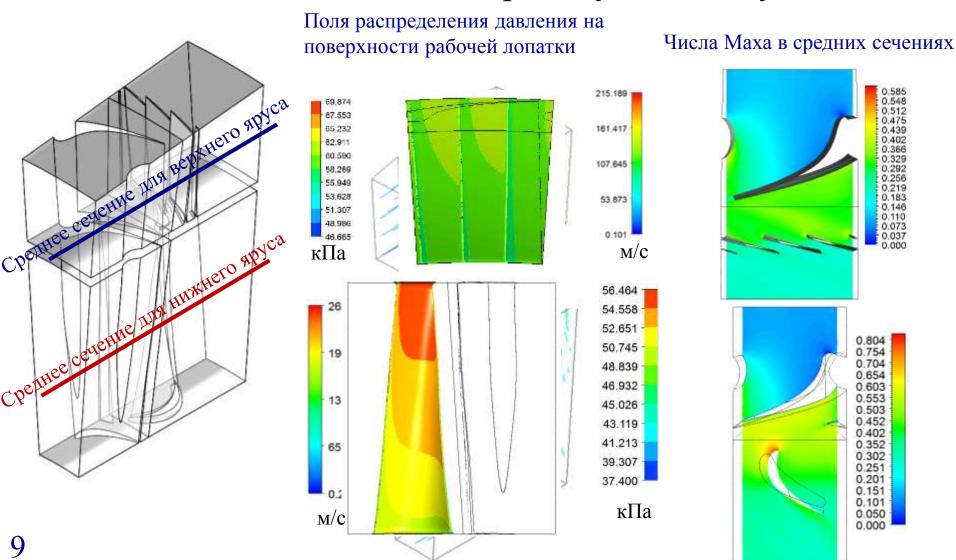

Институт прикладной математики и механики

Пример модели рабочей ступени тихоходной

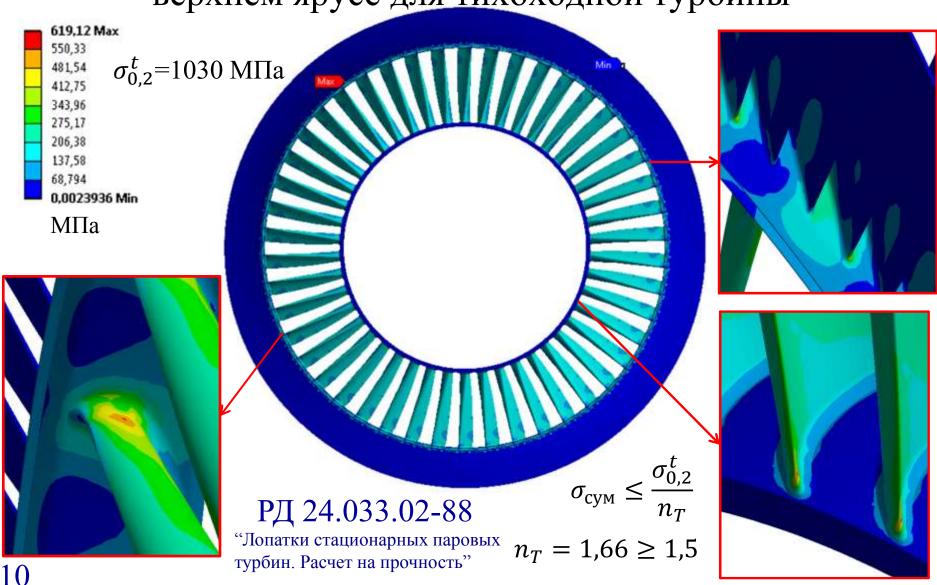


Для правильного описания процесса обтекания пара был сконструирован направляющий аппарат.

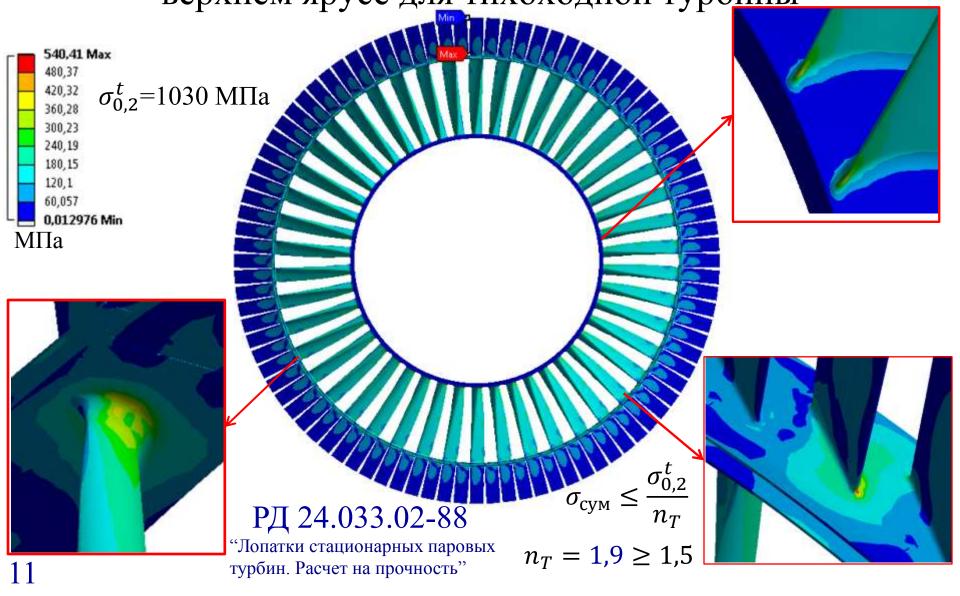
Таким образом была сконструирована предпоследняя ступень паротурбины 7 целиком.


Давление полученное после решения задачи обтекания

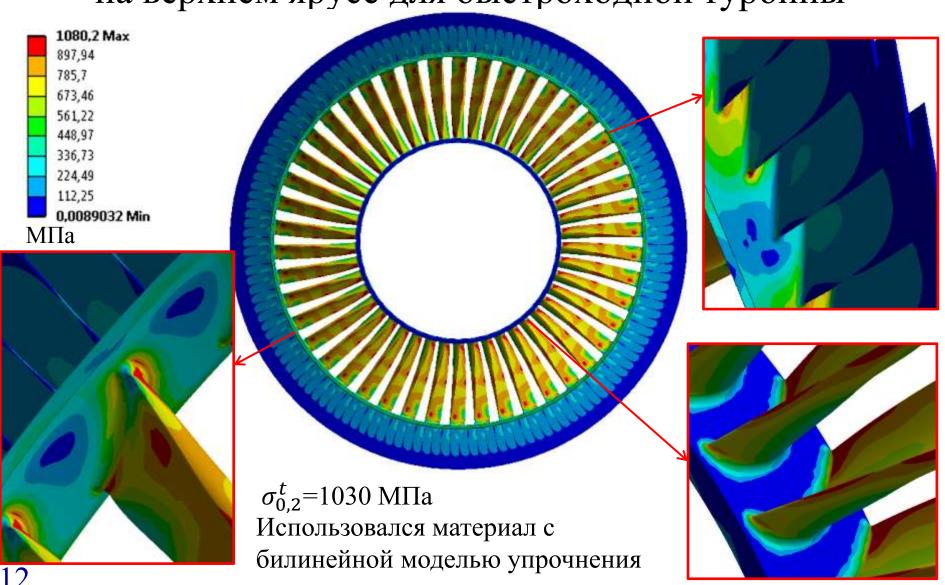
Вращение ротора $\frac{\text{об}}{\text{мин}}$



Решение аэродинамической задачи о нахождении давления потока на рабочую лопатку



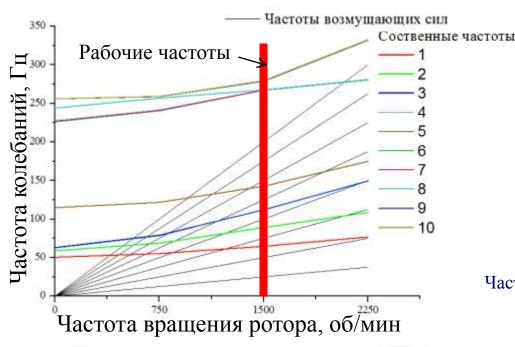
Результаты для лопатки с утроенным оперением на верхнем ярусе для тихоходной турбины

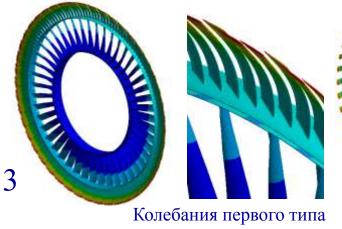


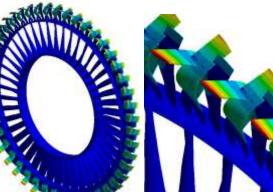
Результаты для лопатки с утроенным оперением на верхнем ярусе для тихоходной турбины

Результаты для лопатки с утроенным оперением на верхнем ярусе для быстроходной турбины

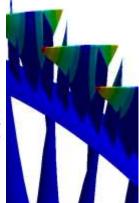
Модальный анализ рабочего колеса с утроенным верхним ярусом



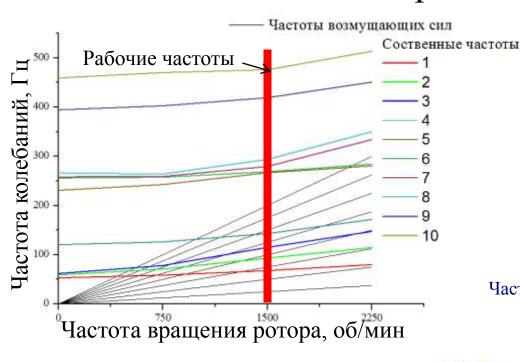

Таблица собственных частот

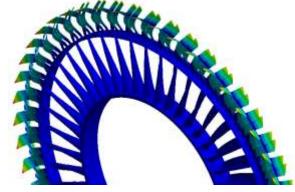

Частота вращения ротора турбины (об/мин)

Собственная					
частота	0	75	50	1500	2250
1		50,433	55,195	64,6	76,758
2		58,821	68,697	89,008	108,52
3		62,945	78,996	112,	149,41
4		62,224	78,063	112,06	149,49
5		114,73	121,65	142,53	174,86
6		226,21	240,37	267,12	280,44
7		227,06	241,15	267,2	280,85
8		243,85	256,86	267,43	280,87
9 (Крутильная)		255,92	258,87	278,66	331,95
10 (Крутильная)		256,1	259,08	279,38	332,56


Частота возмущающих сил, вызванная кромочными следами - 3450 Гц

Частота схода вихрей с лопаток направляющего аппарата ~ 2000 Гц




Модальный анализ рабочего колеса с удвоенным верхним ярусом

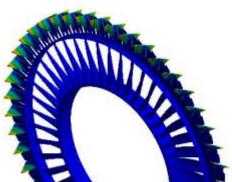


Таблица собс	Таблица собственных частот								
	Частота вращения ротора турбины (об/мин								
Собственная									
частота	0	750	1500	2250					
1	53,149	58,664	67,895	80,053					
2	59,245	71,209	93,204	114,72					
3	61,912	78,194	115,04	147,49					
4	120,63	126,18	143,1	171,75					
5	231,01	242,75	266,64	280,5					
6(Крутильная	256,12	257,75	268,63	284,03					
7	258,37	259,21	279,39	334,02					
8(Крутильная	265,99	264,03	293,76	350,1					
9	394,39	402,5	418,94	450,74					
10	458 98	470 1	475 58	513 36					

Частота возмущающих сил, вызванная кромочными следами - 2300 Гц Частота схода вихрей с лопаток направляющего аппарата ~ 2000 Гц

Колебания первого типа

Колебания второго типа

Заключение

- Двухъярусные лопатки "вильчатого" типа с утроенным и удвоенным оперением на верхнем ярусе ЦНД для тихоходной турбины выдерживают напряжения, вызванные рабочими усилиями, возникающими во время их эксплуатации. С точки зрения прочностного анализа данные конструкции выдерживают все требования руководящих документов, которые предъявляются к данному типу рабочих узлов. На основании анализа полученных результатов можно утверждать, что работы по исследованию и проектированию лопаток данного типа в ОАО "НПО ЦКТИ" будут продолжены.
- Двухъярусные лопатки "вильчатого" типа с утроенным оперением на верхнем ярусе ЦНД для быстроходной турбины не выдерживают напряжений, вызванных рабочими усилиями, возникающими во время их эксплуатации, и не соответствуют требованиям, предъявляемым к данному типу рабочих узлов. На основании полученных результатов можно утверждать, что данные лопатки, несмотря на использования современных титановых сплавов, в настоящее время не могут быть использованы на практике. По видимому, применение в будущем композитных материалов, наряду с кардинальным изменением формы профилей и перегородок будут способствовать созданию рабочих узлов подобного типа.

Спасибо за внимание!