

1

Выпускная работа бакалавра

Конечно-элементное моделирование и исследование тягово – сцепного устройства, заднего бампера автомобиля. Оптимизация конструкции.

Направление: 151600 – Прикладная механика

Выполнил студент гр. 43602/1 Р.В. Ким Руководитель, к.т.н., проф. А.И. Боровков Соруководитель, асс. О.И. Клявин

> Санкт – Петербург 2014

Содержание

•Введение

•Модельная задача.

•Постановка задачи. Методика проведения теста.

•Разработка конечно-элементной модели задней части автомобиля и

тягово-сцепного устройства

•Результаты конечно-элементного моделирования и их анализ.

•Модернизация конструкции. Анализ результатов. Сравнение. Выводы.

Введение

К нижней задней части кузова легкового

Со съемным крюком и сцепным шаром	
Жестко зафиксированный на автомобиле	w
Фланцевый (рассчитан под стандартные посадочные места)	

Максимальная конструктивная масса

Расстояние между центром шара и

Минимальное расстояние между задним

Диаметр сцепного шара

дорожным покрытием

бампером и центром шара

Метод крепления

прицепа

Общие сведения

3500 кг

50 мм

65 мм

автомобиля

От 350 до 420 мм

		20
Co	0	NE S
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Модель ТСУ







#### 3

## Виды ТСУ



R=0.02m

Перемещения, [мм]

7186



0.7

0.00

0,00

50,00

100,00 150,00 Длина балки (мм)

Прогиб (мм)

250,00

200,00







## Постановка задачи.



Крепление ТСУ к лонжеронам



Тип нагружения.



#### Величина и направление силы

Номер цикла	Ось действия	Величина		
	силы	силы, кН		
1	Y	Fy = -6,4		
2	Y	Fy = 6,4		
3	Z	Fz = -6,4		
4	Z	Fz = 6,4		
5	Х	Fx = -19,1		
6	х	Fx = 19,1		





# Разработка конечно-элементной модели задней части автомобиля.

#### Геометрическая модель









Вид снизу



Число элементов	514244
Число узлов	546007
Число степеней свободы	2876073



на



## Физико-механические свойства материалов, используемых в модели задней части автомобиля

Цвет матернала на рисунке	Название матернала	Модуль Юнга Е, МПа	Плотность р, кг/м ³	Коэффицие ит Пуассова v, -	Предельное удлинение, %	Предел текучести о , МПа
	ST3700_G	2.07.105	7820	0.3	21	370
	HC260LA	2.1·10 ⁵	7800	0.3	26	260
	DC04	2.1·10 ⁵	7800	0.3	37	210
	KU0015R	2.1-10 ⁵	7850	0.3	25	350
	H340LA	2.1-10 ⁵	7820	0.3	21	340
	H420LA	2.1.105	7820	0.3	17	420

Распределение материалов в КЭ модели задней части автомобиля.



Вид снизу



# Результаты КЭ моделирования и их анализ.







# Результаты КЭ моделирования и их анализ.

Распределение пластических деформаций в критических зонах.





### Оптимизация конструкции





# Результаты КЭ моделирования и их анализ.



Критическая зона	Напряжения, МПа		
Правый лонжерон	1	380	
	2	173	
Левый лонжерон	3	112	
	4	101	









## Результаты для модернизированной модели и их анализ.

Распределение пластических деформаций в критических зонах.

Эквивалентные пластические деформации, [-]





# Анализ результатов

	Первоначальная конструкция		Модернизированная конструкция		Изменение результатов	
Значение максимальных напряжений в левом лонжероне, МПа	384	388	112	101	-71%	-74%
Значение максимальных напряжений в правом лонжероне, МПа	407	393	381	173	-7%	-66%
Значение пластической деформации в левом лонжероне, %	0,33	0,39	0,19	0,31	-42%	-21%
Значение пластической деформации в правом лонжероне, %	1,28	0,68	0,83	0,43	-45%	-37%







# Заключение

✓ Решены модельные задачи и проведено сравнение с аналитическим решением

✓Проведено изучение строения задней части кузова и ТСУ

✓ При построении конечно-элементной модели были смоделированы сварные точки, клеевые соединения и лазерная сварка.

**√Был сформулирован метод исследования, приведены** численные величины пластических деформаций в критических зонах конструкции.

√Были предложены варианты изменений конструкции и приведены результаты КЭ моделирования измененной модели.



√Был проведён анализ результатов пластических деформаций Д0 изменений И после внесения B Сделаны конструкцию. выводы практичности 0 рассматриваемых изменений конструкции.



ANSA





# Спасибо за внимание!