САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ И МЕХАНИКИ КАФЕДРА «МЕХАНИКА И ПРОЦЕССЫ УПРАВЛЕНИЯ»

> ДИССЕРТАЦИЯ на соискание степени МАГИСТРА

тема: Комплексный подход к изучению фазового состава и морфологии дисперсных выделений в высокопрочных сталях при отпуске

Выполнил студент гр.63602/3 Руководитель, к.х.н., доц. Соруководитель, к.ф.-м.н., доц. Матвиенко А.Н. Петров С.Н. Золоторевский Н.Ю.

Содержание

- Постановка задачи
- Введение
- Полученные результаты
- Выводы

Постановка задачи

- Разработка комплексного подхода к решению проблем анализа фазового состава и морфологии дисперсных выделений в жаропрочных высокохромистых сталях для решения различных металловедческих задач;
- Разработка методик приготовления образцов для исследований методом малоуглового рассеяния;
- Исследование дисперсных выделений на примере стали 15Х12ВНМФ взаимодополняющими методами.

Введение

Набор используемых методов для исследования фазового состава и морфологии дисперсных выделений

- - оптическая металлография,
- - метод рентгеновской дифрактометрии, РСА,
- - метод малоуглового рассеяния, МУР,
- метод просвечивающей электронной микроскопии,
- - метод нейтронной дифракции.

Режимы термообработки

Оптическая металлография Жаропрочная высокохромистая сталь 15X12BHMФ

Микроструктуры стали а) в исходном состоянии (мартенситно-ферритном) и б) после нагрева по режиму 1 (феррито-перлитном).

Рентгеноструктурный фазовый анализ

Участок дифракционного спектра образца стали 15X12BHMФ в исходном состоянии и после выдержки по режиму 1

Фазовый состав: α-Fe и Me₂₃C_{6 ,} значимых различий не выявлено

Изготовление образцов методом ионного травления

Установке PECS (Precision Etching Coating System) – установка для прецизионного травления и нанесения покрытий.

Профилограмма после 55 циклов, Образец утонился на 10 мкм

Всего сделано 307 циклов

Малоугловое рассеяние (МУР)

Диффузные кривые рассеяния образцов стали 15Х12ВНМФ в исходном состоянии и после нагрева по режиму 1 в виде фольги (зеленая кривая) и утоненной пластины (синяя кривая), представленные в координатах $\lg i(s) - s^2$ 9

Просвечивающая электронная микроскопия Исходное состояние – отжиг при температуре 700°С длительностью 6 часов

Тонкая структура образца стали 15Х12ВНМФ в исходном состоянии:

(а) — светлопольное изображение структуры реечного мартенсита (90%),

(б) – структура гранулярного бейнита (10%).

ПЭМ (исходное состояние)

Элементный состав дисперсных частиц:

Элемент		V(K)	Cr(K)	Mn(K)	Fe(K)	Ni(K)	Mo(K)	W(L)	
ание,	%	Частица	0.23	25.08	2.78	69.95	0.75	1.18	0.00
Содерж	ат. 9	Матрица	0.00	11.73	1.54	86.15	0.46	0.10	0.00

Результаты идентификации фазы по 5 рефлексам:

.	T	Параметры решётки				Погрешность	
Формула	тип решетки	a, Å	b, Å	c, Å	β,°	Δd	Δφ
(Fe,Cr) ₂₃ C ₆	ГЦК	10,62				6,1%	1,0°

Исследуемая частица является карбидом типа **(Fe,Cr)₂₃C_{6,}** размер частиц 90нм

Просвечивающая электронная микроскопия

Режим 1 — быстрый нагрев в дилатометре до 1000°С, кратковременная выдержка, подстуживание до 700°С и выдержка при этой температуре в течение 16 ч.

Тонкая структура образца стали 15Х12ВНМФ после выдержки по режиму 1:

- (а) полигональный феррит (90-95%),
- (б) перлитоподобный бейнит (5-10%).

<u> ПЭМ (после выдержки по режиму 1)</u>

Элементный состав дисперсных частиц

Элемент		V(K)	Cr(K)	Mn(K)	Fe(K)	Ni(K)	Mo(K)	W(L)	
ание,	%	Частица	1.47	35.77	3,63	56,19	0.53	1.63	0.74
Содерж	ат.	Матрица	0.04	11.98	1.80	85.21	0.40	0.31	0.24

Результаты идентификации фазы по 6 рефлексам

.	T	Параметры решётки				Погрешность		
Формула	тип решетки	a <i>,</i> Å	b, Å	c, Å	β <i>,</i> °	Δd	Δφ	
(Fe,Cr) ₂₃ C ₆	ГЦК	10,62				3,2%	0,7°	

Частицы **Ме₂₃С₆** размером 250-300нм

ПЭМ (после выдержки по режиму 1)

Элементный состав дисперсных частиц:

				$M_{\rm p}(k)$		NI:///		\\//1\
элег	мент	V(K)	Cr(K)	IVIN(K)	Fe(K)	NI(K)		VV(L)
le,	Частица 1	2.45	12.82	1.70	82.12	0.68	0.00	0.19
ержани ат. %	Частица 2	2.21	12.15	1.70	82.53	0.82	0.33	0.24
Сод	Матрица	0.05	11 74	1 54	85 86	0.67	0.16	0.22
			<u> </u>	1.54		0.07	0.10	0.22

Частицы типа **V₂C** размером 25-30нм

Результаты идентификации фазы по 5 рефлексам:

.	T	Параметры решётки				Погрешность		
Формула	тип решетки	a, Å	b, Å	c, Å	β <i>,</i> °	Δd	Δφ	
V ₂ C	Орторомбическая	4,58	5,74	5,04		1,9%	1,8°	

Результаты комплексного исследования дисперсных частиц в исходном состоянии и после дополнительного нагрева

- 1. Оптическая металлография выявила различия в их микроструктуре;
- 2. Методом рентгеноструктурного анализа определен фазовый состав, одинаковый для обоих образцов;
- Методом малоуглового рассеяния в диапазоне размеров 10-90 нм в образце после дополнительного нагрева по режиму 1 зафиксировано наличие дисперсных выделений средним размером 29 нм;
- Методом просвечивающей электронной микроскопии исследована тонкая структура образцов в исходном состоянии и после выдержки по режиму 1, и выявлены различия в фазовом составе и размерах содержащихся дисперсных выделений.

Выводы

- Разработан и опробован комплексный подход к исследованию дисперсных выделений, реализованный на примере стали 15Х12ВНМФ;
- Разработана методика изготовления пластин для малоуглового рассеяния методом ионного травления, обеспечивающих получение информации с представительного участка размером 1,5-2 мм;
- На основании проведенного комплексного исследования достоверно установлено, что в стали 15Х12ВНМФ при изотермической выдержке в 700°С 16 ч происходит значительный рост карбида Me₂₃C₆ (размер частиц увеличивается в 3 раза) и формируются мелкодисперсные частицы ванадия размером 25-30 нм.

Спасибо за внимание!