

Выполнил студент группы 43602/1

А.И. Филимохина

Руководитель, д.ф.-м.н., член-корр. РАН И.Д Индейцев Соруководитель, к.т.н., ген. директор АО «ЦИФРА» Д.С. Михалюк

> Санкт-Петербург 2019

Проблематика и актуальность проекта

- Актуальность: строительство легких плавучих быстровозводимых конструкций
- Практическое применение: морские переправы, плавучие площадки и более сложные сооружения на воде
- Проблематика: испытательные установки имеют ограниченные габариты рабочего пространства

Цель

Разработать конечно-элементную модель понтонного модуля для исследования на прочность составных понтонных конструкций

Задача Ляме для материала с кинематическим упрочнением

Толстостенная труба под действием внутреннего давления

Задача Ляме для материала с кинематическим упрочнением

Построение сетки конечных элементов

- 1. Упрощение геометрии
- 2. Разделение модуля на сегменты для задания толщин стенок

3. Определение оптимального размера конечного элемента

Параметры с	етки КЭ:
-------------	----------

Размер элемента, мм	5
Число узлов	51364

Калибровка модели материала

Моделирование опыта на трехточечный изгиб

Мульти линейная упруго-пластическая модель материала

Валидация конечно-элементной модели по серии экспериментов

Анализ результатов расчета и данных эксперимента

Моделирование эксперимента

Сравнение характера деформации в эксперименте и расчете

Анализ результатов расчета и данных эксперимента

Растяжение в медианном направлении

Сравнение характера деформации в эксперименте и расчете

Анализ результатов расчета и данных эксперимента

Заключение

- По итогам работы решены поставленные задачи:
 - Построена сетка КЭ
 - Проведена калибровка модели материала
 - Проведена валидация КЭМ
 - Результаты расчетов сопоставлены с данными лабораторных испытаний
- Построенная конечно-элементная модель позволяет получить удовлетворительные результаты при моделировании серии экспериментов

