Министерство науки и высшего образования Российской Федерации Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики

Выпускная квалификационная работа магистра «МОДЕЛИРОВАНИЕ НАЧАЛЬНОЙ СТАДИИ ФРАГМЕНТАЦИИ ЗЁРЕН»

по направлению 15.04.03 «Прикладная механика» по образовательной программе 15.04.03_06 «Физика прочности и пластичности материалов»

Выполнил:

Студент гр. 23645/2 А.Д. Саламанов

Руководитель: Проф., д. ф.-м. н. А.А. Зисман

> Санкт-Петербург 2019

Фрагментированная структура с разориентировками $\theta \sim \varepsilon$. При $\varepsilon > 1$ величина θ достигает 10° ... 20°.

<u>Актуальность проблемы:</u> Измельчение структуры при больших пластических деформациях позволяет повысить прочность материала более чем в 2 раза, не используя дорогостоящего легирования.

Природа фрагментации по современным представлениям:

границ со стыков зёрен

- 1. Для произвольной однородной деформации зерна необходимо 5 систем скольжения, но их взаимодействие предполагает чрезмерное упрочнение материала, т.е. увеличение работы деформации, следовательно энергетически выгодно реализовать данную деформацию зерна усреднением порциальных деформаций субзерен, в каждом из которых действует малое (2-3) число систем скольжения.
- 2. Неоднородность скольжения порождает внутри зерна дислокации границ.
- 3. Процесс начинается от стыков в результате взаимодействия различно ориентированных зёрен

<u>Цель работы</u> – моделирование начальных стадий фрагментации, т.е. формирование субграниц вблизи стыков из-за различия картины скольжения у смежных фасеток межзёренной границы.

Особенность этой стадии – преобладает эффект взаимодействия зёрен.

Необходимые условия при

моделировании взаимодействия зёрен:

- 1. Совместность пластической деформации на межзёренных граница
- 2. Распределение деформации между зёрнами согласуется с заданно макроскопической деформацией

<u> Пример – модель Тейлора:</u>

 $\varepsilon_1 = \varepsilon_2 \dots = \varepsilon_m$, однако однородность деформации (схемы скольжения) в каждом зерне исключает его фрагментацию. Это же ограничение сохраняется в существующих моделях деформации поликристалла, которые являются развитием модели Тейлора.

Решение проблемы

<u>1. Условие совместности Сен-Венана:</u> $\nabla \times \hat{\varepsilon} \times \nabla = 0$

На границе раздела:

 $\overline{N} imes [\hat{\varepsilon}] imes \overline{N} = 0$, где $[\hat{\varepsilon}] = \hat{\varepsilon}_2 - \hat{\varepsilon}_1$

Это означает равные проекции локальных $\hat{\varepsilon}_2$ и $\hat{\varepsilon}_1$ на плоскость границы: $\hat{\varepsilon}_1^{(s)} = \hat{\varepsilon}_2^{(s)}$

2. Связь с макроскопической деформацией є:

Пусть проекция $\hat{\varepsilon}_m$ на фасетку \overline{N} равна $\hat{\varepsilon}_s$, тогда $\hat{\varepsilon}_1^{(s)} = \hat{\varepsilon}_2^{(s)} = \hat{\varepsilon}_s$ Поскольку $\hat{\varepsilon}_s$ зависит от \overline{N} , то внутри одного зерна, вблизи разных фасеток границы будут различные деформации и, следовательно, схемы скольжения.

Геометрический смысл модели:

Каркас межзёренных границ следует макроскопической деформации, но при этом не требуется однородной деформации исходного зерна.

Поскольку $\hat{\varepsilon}_s$ имеет лишь 3 независимых системы компоненты, у каждой фасетки достаточно 3-х активных систем скольжения. Но $\hat{\varepsilon}_s$ зависит от \overline{N} , т.е. выбор 3-х систем у различных фасеток будет различаться.

Выбор локальной схемы скольжения

ГЦК кристалл: 12 систем скольжения типа \bar{b} <110> \bar{n} {111}. Они задаются единичными нормальными векторами \bar{n} и векторами Бюргерса \bar{b} .

 $ar{d}_i$ - элементарная симметричная деформация (при единичном сдвиге γ)

i – системы скольжения; \hat{S}_i - проекция $ar{d}_i$ на фасетку $ar{N}$.

Ориентация кристалла:

Унитарная матрица \hat{R} или дуальный вектор \bar{V}_R . $\{\bar{b}_i\}^{(0)}$, $\{\bar{n}_i\}^{(0)}$ – исходная ориентация, определена в исходной системе координат

 $\bar{b}_i = \hat{R} \cdot \bar{b}_i^{(0)}$ $\bar{n}_i = \hat{R} \cdot \bar{n}_i^{(0)}$ $\hat{S}_i = \hat{R} \cdot \hat{S}_i^{(0)} \cdot \hat{R}^T$

Шаг 1: $|\hat{S}_1:\hat{\epsilon}_s| = \max$, т.е. 1-я система скольжения обеспечивает максимальный вклад в заданную проекцию $\hat{\epsilon}_s$.

Шаг 2: $|\Delta: \Delta| = min$, т.е. первые две системы гарантируют минимальное отклонение проекции $\gamma_1 \hat{S}_1 + \gamma_2 \hat{S}_2$ от заданной $\hat{\varepsilon}_s$.

Шаг 3: Для каждой возможной третьей системы решается уравнение $\gamma_1 \hat{S}_1 + \gamma_2 \hat{S}_2 + \gamma_3 \hat{S}_3 = \hat{\varepsilon}_s$ и выбирается та, которой отвечает минимальная работа, т.е. $|\gamma_1| + |\gamma_2| + |\gamma_3| = min$

<u>Локальные повороты решётки</u>

 $\hat{d} = \frac{1}{2}(\bar{n}\otimes\bar{b} + \bar{b}\otimes\bar{n})_i$ $\hat{\omega} = \frac{1}{2}(\bar{n}\otimes\bar{b})_i$

 \hat{d} - пластическая деформация

 $\widehat{\omega}$ - пластический поворот при инвариантной решётке

По выбранным системам скольжения и соответствующим сдвигам находим локальные переориентации \overline{W} и разориентировки $\overline{\theta}$:

 $W = \overline{N} \times \hat{\varepsilon} * \overline{N} - \overline{\omega}$ - следует из условий совместности, включающей как симметричную деформацию, так и пластический поворот.

,где: $\hat{\varepsilon} = \gamma_1 \hat{d}_1 + \gamma_2 \hat{d}_2 + \gamma_3 \hat{d}_3$ $\overline{\omega} = \gamma_1 \overline{\omega}_1 + \gamma_2 \overline{\omega}_2 + \gamma_3 \overline{\omega}_3$

$$\begin{split} \bar{\theta}_{12} &= \bar{W}_2 - \bar{W}_1 \\ \bar{\theta}_{12} &= \bar{\theta}_{56}; \ \bar{\theta}_{13} = \bar{\theta}_{45}; \ \bar{\theta}_{23} = \bar{\theta}_{24} = \bar{\theta}_{63} \\ \bar{W}_1 &= \bar{W}_5; \ \bar{W}_2 = \bar{W}_6; \ \bar{W}_3 = \bar{W}_4 \end{split}$$

<u>Результаты</u>

Результаты для
$$\hat{\varepsilon} = 0.1 * \begin{pmatrix} -0.5 & 0 & 0 \\ 0 & -0.5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

при ориентации $ar{V}_R=0.1\pi[1;1.1;0.9]$ и $ar{V}_R=0.15\pi[0.9;1.1;1]$

Ориентация	$\bar{V}_R = 0.1\pi[1; 1.1; 0.9]$	$\bar{V}_R = 0.15\pi[0.9; 1.1; 1]$
\overline{W}_1	[-0,4838;	[0.0050;
	0.7209;	-0.0282;
	-0.4963]	0.0080]
	2.5153°	1.2863°
\overline{W}_2	[0.8791;	[-0.4464;
	-0.0894;	0.5178;
	-0.4682]	-0.7298]
	3.4315°	3.0562°
\overline{W}_3	[-0.8406;	[0.5177;
	0.5397;	-0.2696;
	0.0474]	-0.8120]
	9.1005°	0.5787°
$\bar{\theta}_{12}$	[-0.8916;	[-0.0288;
	0.4465;	0.0559;
	0.0755]	-0.0470]
	4.7481°	4.4746°
$\bar{ heta}_{13}$	[0.8770;	[-0.0003;
	0.4224;	-0.0255;
	-0.2290]	0.0162]
	7.3346°	1.3830°
$\bar{\theta}_{23}$	[-0.8853;	[0.0290;
	0.4331;	-0.0303;
	-0.1692]	0.0307]
	12.0475°	3.2316°

Результаты для
$$\hat{\varepsilon} = 0.05 * \begin{pmatrix} -0.5 & 0 & 0 \\ 0 & -0.5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

при ориентации $\overline{V}_R = 0.1\pi[1; 1.1; 0.9]$ и $\overline{V}_R = 0.15\pi[0.9; 1.1; 1]$

Ориентация	$V_R = 0.1\pi[1; 1.1; 0.9]$	$V_R = 0.15\pi[0.9; 1.1; 1]$
\overline{W}_1	[-0.6625;	[-0.0266;
	0.9876;	-0.9384;
	-0.6808]	0.3444]
	1.2563°	0.6429°
\overline{W}_2	[0.8793;	[-0.4461;
	0.0909;	0.5181;
	0.4675]	-0.7298]
	1.7152°	1.5297°
\overline{W}_3	[-0.8407;	[0.5260;
	0.5394;	0.2652;
	0.0477]	-0.8081]
	4.5482°	0.2905°
$\bar{\theta}_{12}$	[-0.8913;	[0.6075;
	0.4472;	-0.1642;
	0.0749]	-0.7772]
	2.3735°	2.2 395°
$\bar{ heta}_{13}$	[-0.8771;	[-0.1955;
	-0.4221;	0.9805;
	0.2293]	0.0191]
	3.6671°	0.6939°
$\bar{\theta}_{23}$	[0.8853;	[0.3274;
	-0.4332;	-0.4422;
	0.1691]	0.8350]
	6.0228°	1.6179°

Зависимость фрагментации от ориентации зерна и степени макроскопической деформации

Заключение

Модель воспроизводит наблюдаемую в экспериментах зависимость локальных разориентировок внутри зерна, на начальной стадии фрагментации, от исходной ориентации решётки относительно главных осей макродеформации и от морфологии межзёренных границ.